%I #21 Jun 27 2021 03:39:48
%S 6,20,28,70,88,104,272,304,368,464,496,550,572,650,836,945,1184,1312,
%T 1376,1430,1504,1575,1696,1870,1888,1952,2002,2090,2205,2210,2470,
%U 2530,2584,2990,3128,3190,3230,3410,3465,3496,3770,3944,4030,4070,4095,4216
%N Primitive Zumkeller numbers.
%C A number is called a primitive Zumkeller number if it is a Zumkeller number (A083207) but none of its proper divisors are Zumkeller numbers. These numbers are very similar to primitive non-deficient numbers (A006039), but neither is a subsequence of the other.
%C Because every Zumkeller number has a divisor that is a primitive Zumkeller number, every Zumkeller number z can be factored as z = d*r, where d is the smallest divisor of z that is a primitive Zumkeller number.
%C Every number of the form p*2^k is a primitive Zumkeller number, where p is an odd prime and k = floor(log_2(p)).
%H T. D. Noe, <a href="/A180332/b180332.txt">Table of n, a(n) for n = 1..9179</a>
%t ZumkellerQ[n_] := ZumkellerQ[n] = Module[{d = Divisors[n], ds, x}, ds = Total[d]; If[OddQ[ds], False, SeriesCoefficient[Product[1 + x^i, {i, d}], {x, 0, ds/2}] > 0]];
%t Reap[For[n = 1, n <= 5000, n++, If[ZumkellerQ[n] && NoneTrue[Most[Divisors[ n]], ZumkellerQ], Print[n]; Sow[n]]]][[2, 1]] (* _Jean-François Alcover_, Mar 01 2019 *)
%o (Python)
%o from sympy import divisors
%o from sympy.utilities.iterables import subsets
%o def isz(n): # after Peter Luschny in A083207
%o divs = divisors(n)
%o s = sum(divs)
%o if not (s%2 == 0 and 2*n <= s): return False
%o S = s//2 - n
%o R = [m for m in divs if m <= S]
%o return any(sum(c) == S for c in subsets(R))
%o def ok(n): return isz(n) and not any(isz(d) for d in divisors(n)[:-1])
%o print(list(filter(ok, range(1, 5000)))) # _Michael S. Branicky_, Jun 20 2021
%o (SageMath) # uses[is_Zumkeller from A083207]
%o def is_primitiveZumkeller(n):
%o return (is_Zumkeller(n) and
%o not any(is_Zumkeller(d) for d in divisors(n)[:-1]))
%o print([n for n in (1..4216) if is_primitiveZumkeller(n)]) # _Peter Luschny_, Jun 21 2021
%Y Cf. A083207, A006039.
%K nonn
%O 1,1
%A _T. D. Noe_, Sep 07 2010