The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A180332 Primitive Zumkeller numbers. 8
 6, 20, 28, 70, 88, 104, 272, 304, 368, 464, 496, 550, 572, 650, 836, 945, 1184, 1312, 1376, 1430, 1504, 1575, 1696, 1870, 1888, 1952, 2002, 2090, 2205, 2210, 2470, 2530, 2584, 2990, 3128, 3190, 3230, 3410, 3465, 3496, 3770, 3944, 4030, 4070, 4095, 4216 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A number is called a primitive Zumkeller number if it is a Zumkeller number (A083207) but none of its proper divisors are Zumkeller numbers. These numbers are very similar to primitive non-deficient numbers (A006039), but neither is a subsequence of the other. Because every Zumkeller number has a divisor that is a primitive Zumkeller number, every Zumkeller number z can be factored as z = d*r, where d is the smallest divisor of z that is a primitive Zumkeller number. Every number of the form p*2^k is a primitive Zumkeller number, where p is an odd prime and k = floor(log_2(p)). LINKS T. D. Noe, Table of n, a(n) for n = 1..9179 MATHEMATICA ZumkellerQ[n_] := ZumkellerQ[n] = Module[{d = Divisors[n], ds, x}, ds = Total[d]; If[OddQ[ds], False, SeriesCoefficient[Product[1 + x^i, {i, d}], {x, 0, ds/2}] > 0]]; Reap[For[n = 1, n <= 5000, n++, If[ZumkellerQ[n] && NoneTrue[Most[Divisors[ n]], ZumkellerQ], Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Mar 01 2019 *) PROG (Python) from sympy import divisors from sympy.utilities.iterables import subsets def isz(n): # after Peter Luschny in A083207 divs = divisors(n) s = sum(divs) if not (s%2 == 0 and 2*n <= s): return False S = s//2 - n R = [m for m in divs if m <= S] return any(sum(c) == S for c in subsets(R)) def ok(n): return isz(n) and not any(isz(d) for d in divisors(n)[:-1]) print(list(filter(ok, range(1, 5000)))) # Michael S. Branicky, Jun 20 2021 (SageMath) # uses[is_Zumkeller from A083207] def is_primitiveZumkeller(n): return (is_Zumkeller(n) and not any(is_Zumkeller(d) for d in divisors(n)[:-1])) print([n for n in (1..4216) if is_primitiveZumkeller(n)]) # Peter Luschny, Jun 21 2021 CROSSREFS Cf. A083207, A006039. Sequence in context: A119425 A342669 A006039 * A338133 A064771 A006036 Adjacent sequences: A180329 A180330 A180331 * A180333 A180334 A180335 KEYWORD nonn AUTHOR T. D. Noe, Sep 07 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 19:04 EST 2022. Contains 358588 sequences. (Running on oeis4.)