login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A180188 Triangle read by rows: T(n,k) is the number of permutations of [n] with k circular successions (0<=k<=n-1). A circular succession in a permutation p of [n] is either a pair p(i), p(i+1), where p(i+1)=p(i)+1 or the pair p(n), p(1) if p(1)=p(n)+1. 4
1, 0, 2, 3, 0, 3, 8, 12, 0, 4, 45, 40, 30, 0, 5, 264, 270, 120, 60, 0, 6, 1855, 1848, 945, 280, 105, 0, 7, 14832, 14840, 7392, 2520, 560, 168, 0, 8, 133497, 133488, 66780, 22176, 5670, 1008, 252, 0, 9, 1334960, 1334970, 667440, 222600, 55440, 11340, 1680, 360, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

For example, p=(4,1,2,5,3) has 2 circular successions: (1,2) and (3,4).

Sum of entries in row n = n! = A000142(n).

T(n,0)=nd(n-1)=A000240(n).

T(n,1)=n(n-1)d(n-2)=A180189(n).

Sum(k*T(n,k), k>=0)=n! = A000142(n) if n>=2.

LINKS

Alois P. Heinz, Rows n = 1..141, flattened

S. M. Tanny, Permutations and successions, J. Combinatorial Theory, Series A, 21 (1976), 196-202.

FORMULA

T(n,k) = n*C(n-1,k)*d(n-1-k), where d(j) = A000166(j) are the derangement numbers (see Prop. 1 of the Tanny reference).

T(n,k) = n*A008290(n-1,k), 0<=k<n, n>=1. - R. J. Mathar, Sep 08 2013

EXAMPLE

T(3,2) = 3 because we have 123, 312, and 231.

The triangle starts:

1;

0,   2;

3,   0,  3;

8,  12,  0, 4;

45, 40, 30, 0, 5;

MAPLE

A180188 := proc (n, k) n*binomial(n-1, k)*A000166(n-1-k) end proc:

for n to 10 do seq(A180188(n, k), k = 0 .. n-1) end do; # yields sequence in triangular form

MATHEMATICA

T[n_, k_] := n*Binomial[n-1, k]*Subfactorial[n-1-k]; Table[T[n, k], {n, 0, 10}, {k, 0, n-1}] // Flatten (* Jean-Fran├žois Alcover, Feb 19 2017 *)

CROSSREFS

Cf. A000142, A000166, A000240, A180189.

Sequence in context: A187988 A035549 A245255 * A316607 A194365 A216217

Adjacent sequences:  A180185 A180186 A180187 * A180189 A180190 A180191

KEYWORD

nonn,tabl

AUTHOR

Emeric Deutsch, Sep 06 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 04:23 EDT 2019. Contains 322406 sequences. (Running on oeis4.)