login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A180177 Triangle read by rows: T(n,k) is the number of compositions of n without 2's and having k parts; 1<=k<=n. 9
1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 2, 3, 0, 1, 1, 3, 3, 4, 0, 1, 1, 4, 6, 4, 5, 0, 1, 1, 5, 9, 10, 5, 6, 0, 1, 1, 6, 13, 16, 15, 6, 7, 0, 1, 1, 7, 18, 26, 25, 21, 7, 8, 0, 1, 1, 8, 24, 40, 45, 36, 28, 8, 9, 0, 1, 1, 9, 31, 59, 75, 71, 49, 36, 9, 10, 0, 1, 1, 10, 39, 84, 120, 126, 105, 64, 45, 10, 11 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,8

COMMENTS

T(n,n) = 1; T(n,n-1) = 0; T(n,n-2) = n-2;

T(n,n-3) = n-3; T(n,n-4) = (n-4)(n-3)/2; T(n,n-5) = (n-5)^2.

REFERENCES

P. Chinn and S. Heubach, Compositions of n with no occurrence of k, Congressus Numerantium, 164 (2003), pp. 33-51.

R.P. Grimaldi, Compositions without the summand 1, Congressus Numerantium, 152, 2001, 33-43.

LINKS

Table of n, a(n) for n=1..89.

P. Chinn and S. Heubach, Integer Sequences Related to Compositions without 2's, J. Integer Seqs., Vol. 6, 2003 (see Table 3).

Milan Janjic, Binomial Coefficients and Enumeration of Restricted Words, Journal of Integer Sequences, 2016, Vol 19, #16.7.3

FORMULA

Number of compositions of n without p's and having k parts = Sum((-1)^{k-j}*binom(k,j)*binom(n-pk+pj-1,j-1), j=floor((pk-n)/(p-1))..k),(n>=p+1).

For n<p+1, the number of compositions of n is binomial(n-1,k-1), except in the case of compositions of p into 1 part, which number equals 0. - Milan Janjic, Aug 06 2015

For a given p, the g.f. of the number of compositions without p's is G(t,z)=tg(z)/[1-tg(z)], where g(z)=z/(1-z)-z^p; here z marks sum of parts and t marks number of parts.

G.f.: [(x-x^2+x^3)/(1-x)]^k=sum{n>0, T(n,k)*x^n}, T(n,k)=T(n-1,k)+T(n-1,k-1)-T(n-2,k-1)+T(n-3,k-1). - Vladimir Kruchinin, Sep 29 2014

EXAMPLE

T(7,4)=4 because we have (4,1,1,1), (1,4,1,1), (1,1,4,1), and (1,1,1,4).

Triangle starts:

1;

0,1;

1,0,1;

1,2,0,1;

1,2,3,0,1;

1,3,3,4,0,1;

1,4,6,4,5,0,1;

MAPLE

p:= 2: T := proc (n, k) options operator, arrow: sum((-1)^(k-j)*binomial(k, j)*binomial(n-p*k+p*j-1, j-1), j = (p*k-n)/(p-1) .. k) end proc: for n to 13 do seq(T(n, k), k = 1 .. n) end do; # yields sequence in triangular form

p := 2: g := z/(1-z)-z^p: G := t*g/(1-t*g): Gser := simplify(series(G, z = 0, 15)): for n to 13 do P[n] := sort(coeff(Gser, z, n)) end do: for n to 13 do seq(coeff(P[n], t, k), k = 1 .. n) end do; # yields sequence in triangular form

with(combinat): m := 2: T := proc (n, k) local ct, i: ct := 0: for i to numbcomp(n, k) do if member(m, composition(n, k)[i]) = false then ct := ct+1 else end if end do: ct end proc: for n to 13 do seq(T(n, k), k = 1 .. n) end do; # yields sequence in triangular form

MATHEMATICA

p = 2; max = 14; g = z/(1-z) - z^p; G = t*g/(1-t*g); Gser = Series[G, {z, 0, max+1}]; t[n_, k_] := SeriesCoefficient[Gser, {z, 0, n}, {t, 0, k}]; Table[t[n, k], {n, 1, max}, {k, 1, n}] // Flatten (* Jean-Fran├žois Alcover, Jan 28 2014, after Maple *)

PROG

(Maxima)

T(n, k):=if n<0 then 0 else if n=k then 1 else if k=0 then 0 else  T(n-1, k)+T(n-1, k-1)-T(n-2, k-1)+T(n-3, k-1); /* Vladimir Kruchinin, Sep 23 2014 */

CROSSREFS

Cf. A011973, A180178, A180179, A180180, A180181, A180182, A180183.

Sequence in context: A141169 A215075 A287417 * A104578 A286628 A180243

Adjacent sequences:  A180174 A180175 A180176 * A180178 A180179 A180180

KEYWORD

nonn,tabl

AUTHOR

Emeric Deutsch, Aug 15 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 24 04:33 EST 2018. Contains 299595 sequences. (Running on oeis4.)