This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A180170 a(0) = 1, a(n) = n*a(n-1)*A014963(n). 0

%I

%S 1,1,4,36,288,7200,43200,2116800,33868800,914457600,9144576000,

%T 1106493696000,13277924352000,2243969215488000,31415569016832000,

%U 471233535252480000,15079473128079360000,4357967734014935040000,78443419212268830720000

%N a(0) = 1, a(n) = n*a(n-1)*A014963(n).

%C Lcm of the first n terms of the sequence of the denominators A_n of the preprint.

%H L. A. Medina, V. H. Moll, E. S. Rowland, <a href="https://arxiv.org/abs/0911.1325">Iterated primitives of logarithmic powers</a>, arXiv:0911.1325 [math.NT], 2009-2010, eq (1.6).

%H Jim Pitman and Wenpin Tang, <a href="https://arxiv.org/abs/1704.01166">Regenerative random permutations of integers</a>, arXiv:1704.01166, [math.PR], 2017, p. 18.

%F a(n) = n! * lcm(1,2,...,n) = n! * A003418(n), n > 0. - _Benedict W. J. Irwin_, Nov 01 2016

%t (* First run the program for A014963 *) b[0] := 1; b[1] := 1; b[n_] := n * b[n - 1] * a[n]; Table[b[n], {n, 0, 19}] (* _Alonso del Arte_, Jan 16 2011 *)

%t Join[{1},Table[n!LCM@@Range[n],{n,1,20}]] (* _Benedict W. J. Irwin_, Nov 01 2016 *)

%t F=Table[1,{n,1,20}];For[i=1,i<20,i++,F[[i+1]]=(i+1)*F[[i]]*Exp[MangoldtLambda[i+1]]];Join[{1},F] (* _Benedict W. J. Irwin_, Nov 01 2016 *)

%o (PARI)

%o A014963(n)=

%o {

%o local(r);

%o if( isprime(n), return(n));

%o if( ispower(n,,&r) && isprime(r), return(r) );

%o return(1);

%o }

%o a(n)=if(n==0,1, n * a(n-1) * A014963(n));

%o for(n=0,55, print1(a(n),", "))

%o /* _Joerg Arndt_, Jan 16 2011 */

%K nonn,easy

%O 0,3

%A _R. J. Mathar_, Jan 16 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 20:55 EDT 2019. Contains 328103 sequences. (Running on oeis4.)