OFFSET
0,3
COMMENTS
Lcm of the first n terms of the sequence of the denominators A_n of the preprint.
LINKS
L. A. Medina, V. H. Moll, E. S. Rowland, Iterated primitives of logarithmic powers, arXiv:0911.1325 [math.NT], 2009-2010, eq (1.6).
Jim Pitman and Wenpin Tang, Regenerative random permutations of integers, arXiv:1704.01166, [math.PR], 2017, p. 18.
FORMULA
a(n) = n! * lcm(1,2,...,n) = n! * A003418(n), n > 0. - Benedict W. J. Irwin, Nov 01 2016
MATHEMATICA
(* First run the program for A014963 *) b[0] := 1; b[1] := 1; b[n_] := n * b[n - 1] * a[n]; Table[b[n], {n, 0, 19}] (* Alonso del Arte, Jan 16 2011 *)
Join[{1}, Table[n!LCM@@Range[n], {n, 1, 20}]] (* Benedict W. J. Irwin, Nov 01 2016 *)
F=Table[1, {n, 1, 20}]; For[i=1, i<20, i++, F[[i+1]]=(i+1)*F[[i]]*Exp[MangoldtLambda[i+1]]]; Join[{1}, F] (* Benedict W. J. Irwin, Nov 01 2016 *)
PROG
(PARI)
A014963(n)=
{
local(r);
if( isprime(n), return(n));
if( ispower(n, , &r) && isprime(r), return(r) );
return(1);
}
a(n)=if(n==0, 1, n * a(n-1) * A014963(n));
for(n=0, 55, print1(a(n), ", "))
/* Joerg Arndt, Jan 16 2011 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Jan 16 2011
STATUS
approved