The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A180159 a(n) = smallest number k such that six consecutive prime numbers prime(n), prime(n+1),...,prime(n+5) are divisors of k, k+1,..., k+5 respectively. 1
 788, 210999, 466255, 4669455, 25916396, 51122994, 204732428, 204732429, 549769529, 2309049600, 883426096, 5108177043, 2258007227, 15750496273, 22958443910, 11162458684, 41157474821, 32790221027, 130700807239 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 EXAMPLE a(4)= 4669455 because prime(4) = 7 => 4669455 = 7*667065  ; 4669456 = 11*424496 ; 4669457 = 13*359189 ; 4669458 = 17*274674 ; 4669459 = 19*245761 ; 4669460 = 23*203020. MAPLE with(numtheory):for p from 1 to 15 do: p1:=ithprime(p):p2:=ithprime(p+1):p3:=ithprime(p+2):p4:=ithprime(p+3):p5:=ithprime(p+4):p6:=ithprime(p+5):it:=0:for   n from 1 to 50000000 while(it=0) do:if irem(n, p1)=0 and irem(n+1, p2)=0 and   irem(n+2, p3)=0 and irem(n+3, p4)=0 and irem(n+4, p5)=0 and irem(n+5, p6)=0   then it:=1:printf(`%d, `, n):else fi:od:od: PROG (Sage) def A180159(n): return crt([-5..0][::-1], [nth_prime(i) for i in [n..n+5]]) # [D. S. McNeil, Jan 16 2011] (PARI) a(n)=my(p=prime(n), r=Mod(0, p)); for(i=1, 5, p=nextprime(p+1); r=chinese(r, Mod(-i, p))); lift(r) \\ Charles R Greathouse IV, Jan 16 2011 CROSSREFS Cf. A077338, A180095, A180096, A180100. Sequence in context: A072730 A180100 A072722 * A207280 A207476 A207532 Adjacent sequences:  A180156 A180157 A180158 * A180160 A180161 A180162 KEYWORD nonn AUTHOR Michel Lagneau, Jan 16 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 5 01:27 EDT 2020. Contains 334828 sequences. (Running on oeis4.)