login
Upper bound for the determinant of a matrix whose entries are a permutation of 1, ..., n^2.
3

%I #14 Apr 10 2018 21:44:59

%S 1,11,450,41021,6865625,1867994210,762539814814,441077015225642,

%T 346335386150480625,357017114947987625629,470379650542113331346272,

%U 774869480550211708169959725,1566955892015559322525350178004

%N Upper bound for the determinant of a matrix whose entries are a permutation of 1, ..., n^2.

%D Ortwin Gasper, Hugo Pfoertner and Markus Sigg, An Upper Bound for the Determinant of a Matrix with given Entry Sum and Square Sum, JIPAM, Journal of Inequalities in Pure and Applied Mathematics, Volume 10, Issue 3, Article 63, 2008.

%H Rainer Rosenthal, <a href="/A180087/b180087.txt">Table of n, a(n) for n = 1..191</a>

%H O. Gasper, H. Pfoertner and M. Sigg, <a href="http://www.emis.de/journals/JIPAM/article1119.html">An Upper Bound for the Determinant of a Matrix with given Entry Sum and Square Sum</a> JIPAM, vol. 10, Iss. 3, art. 63, 2008.

%H Markus Sigg, <a href="https://arxiv.org/abs/1804.02897">Gasper's determinant theorem, revisited</a>, arXiv:1804.02897 [math.CO], 2018.

%F a(n) = floor(sqrt(3*((n^5+n^4+n^3+n^2)/12)^n*(n^2+1)/(n+1))).

%Y a(n) is an upper bound for A085000(n).

%K nonn

%O 1,2

%A _Hugo Pfoertner_, Aug 09 2010