login
A180057
The LCM of the n-th row of the triangle of Eulerian numbers, A008292.
0
1, 1, 1, 4, 11, 858, 17214, 14387280, 16561934649, 12632627296395920, 1806607850839536160, 60680518911947880747545184, 3970597825550456048739497554530, 2125765417629321139616806005661738101300, 126059631064606828307362820570036049789588446100
OFFSET
0,4
COMMENTS
Define the Eulerian numbers A(n,k) to be the number of permutations of {1,2,..,n} with k ascents: A(n,k) = Sum_{j=0..k} (-1)^j binomial(n+1,j)(k-j+1)^n.
Then a(n) = lcm(A(n,0), A(n,1), ..., A(n,n)).
LINKS
Digital Library of Mathematical Functions, Table 26.14.1
PROG
(PARI) a(n) = lcm(vector(n, k, sum(j=0, k, (-1)^j * (k-j)^n * binomial(n+1, j)))); \\ Michel Marcus, Mar 13 2018
CROSSREFS
Cf. A008292.
Sequence in context: A216571 A299046 A113314 * A222316 A255383 A354777
KEYWORD
nonn
AUTHOR
Peter Luschny, Aug 08 2010
EXTENSIONS
Partially edited by N. J. A. Sloane, Aug 08 2010
More terms from Michel Marcus, Mar 13 2018
STATUS
approved