login
A180054
In binary expansion, number of 1's in 3n is less than in n.
4
11, 22, 23, 27, 43, 44, 46, 47, 54, 55, 59, 86, 87, 88, 91, 92, 94, 95, 107, 108, 110, 111, 118, 119, 123, 171, 172, 173, 174, 175, 176, 179, 182, 183, 184, 187, 188, 190, 191, 203, 214, 215, 216, 219, 220, 222, 223, 235, 236, 238, 239, 246, 247, 251, 299, 342
OFFSET
1,1
COMMENTS
Or, binary weight of 3n is less than binary weight of n.
Also called the 3-flimsy numbers; see the Stolarsky reference.
If m is here, 2m is too. Hence the "primitive solutions" are all odd (see A134773):
11, 23, 27, 43, 47, 55, 59, 87, 91, 95, 107, 111, 119, 123, 171, 173, 175, 179, 183, 187, 191, 203, 215, 219, 223, 235, 239, 247, 251, 299, 343, 345, 347, 349, 351, 355, 359, 363, 365, 367, 371, 375, 379, 383, 395, 407, 411, 427, 429, 431, 435, 439, 443, 447, 459, 471, 475, 479, 491, 495, ...
These are also the cases where A000120(n) > A000120(6*n) because 6*n = 2*(3*n) means that the number of 1's in 6*n and 3*n are the same. - R. J. Mathar, Aug 13 2010
These are also the cases where A000120(n*2^k1) > A000120(3n*2^k2) for any integers k1, k2 >= 0. - Zak Seidov, Aug 15 2010
LINKS
Kenneth B. Stolarsky, Integers whose multiples have anomalous digital frequencies, Acta Arithmetica 38 (2) (1980), 117-128.
FORMULA
A000120(n) > A000120(3n).
EXAMPLE
n=11=1011_2, 3n=33=100001_2; or A000120(11)=3, A000120(3*11)=2
n=23=10111_2, 3n=69=1000101_2; or A000120(23)=4, A000120(3*23)=3.
MATHEMATICA
Select[Range[500], Count[IntegerDigits[3#, 2], 1]<Count[IntegerDigits[ #, 2], 1]&]
Select[Range[350], DigitCount[#, 2, 1]>DigitCount[3#, 2, 1]&] (* Harvey P. Dale, Sep 01 2021 *)
PROG
(PARI) for(k=1, 350, if(hammingweight(3*k)<hammingweight(k), print1(k, ", "))) \\ Hugo Pfoertner, Dec 26 2019
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Zak Seidov, Aug 08 2010
STATUS
approved