login
A180046
a(n+1) = a(n-3) + a(n-2) - a(n-1) + a(n) starting with 1, 2, 3, 4.
1
1, 2, 3, 4, 4, 5, 8, 11, 12, 14, 21, 30, 35, 40, 56, 81, 100, 115, 152, 218, 281, 330, 419, 588, 780, 941, 1168, 1595, 2148, 2662, 3277, 4358, 5891, 7472, 9216, 11993, 16140, 20835, 25904, 33202, 44273, 57810, 72643, 92308, 121748, 159893, 203096, 257259
OFFSET
1,2
FORMULA
G.f.: -x*(1+x)*(2*x^2+1)/(-1+x-x^2+x^3+x^4). - R. J. Mathar, Aug 14 2010
a(n) = (-1)^(n)*(A100329(n-1)-A100329(n)-2*A100329(n-2)+2*A100329(n-3)) with A100329(-1) = A100329(-2) = 0. - Johannes W. Meijer, Jul 06 2011
EXAMPLE
1 2 3 4 (by definition); 1 + 2 - 3 + 4 = 4, 2 + 3 - 4 + 4 = 5, 3 + 4 - 4 + 5 = 8.
MATHEMATICA
LinearRecurrence[{1, -1, 1, 1}, {1, 2, 3, 4}, 50] (* Harvey P. Dale, Mar 18 2015 *)
PROG
(PARI) Vec(x*(1+x)*(2*x^2+1)/(1-x+x^2-x^3-x^4)+O(x^99)) \\ Charles R Greathouse IV, Jul 06 2011
(Haskell)
import Data.List (zipWith4)
a180046 n = a180046_list !! (n-1)
a180046_list = [1..4] ++ zipWith4 (((((+) .) . (+)) .) . (-))
(drop 3 a180046_list) (drop 2 a180046_list)
(tail a180046_list) a180046_list
-- Reinhard Zumkeller, Oct 08 2014
CROSSREFS
Cf. A100329.
Sequence in context: A103750 A036805 A036804 * A008329 A064558 A178031
KEYWORD
nonn,easy
AUTHOR
Ian Stewart, Aug 08 2010
EXTENSIONS
More terms from R. J. Mathar, Aug 14 2010
Name edited by Michel Marcus, Feb 20 2025
STATUS
approved