OFFSET
0,2
COMMENTS
The a(n) represent the number of n-move paths of a chess queen starting or ending in the central square (m = 5) on a 3 X 3 chessboard. The other squares lead to A180030.
To determine the a(n) we can either sum the components of the column vector A^n[k,m], with A the adjacency matrix of the queen's graph, or we can sum the components of the row vector A^n[m,k], see the Maple program.
This sequence belongs to a family of sequences with g.f. (1+k*x)/(1 - 5*x - (k+5)*x^2). The members of this family that are red queen sequences are A180031 (k=3; this sequence), A152240 (k=2), A000400 (k=1), A057088 (k=0), A122690 (k=-1), A180036 (k=-2), A180038 (k=-3), A015449 (k=-4) and A000007 (k=-5). Other members of this family are A030221 (k= -6), 3*A109114 (k=-8), 4*A020989 (k=-9), 6*A166060 (k=-11).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Index entries for linear recurrences with constant coefficients, signature (5, 8).
FORMULA
G.f.: (1+3*x)/(1 - 5*x - 8*x^2).
a(n) = 5*a(n-1) + 8*a(n-2) with a(0) = 1 and a(1) = 8.
a(n) = ((A+11)*A^(-n-1) + (B+11)*B^(-n-1))/57 with A = (-5+sqrt(57))/16 and B = (-5-sqrt(57))/16.
MAPLE
with(LinearAlgebra): nmax:=19; m:=5; A[5]:= [1, 1, 1, 1, 0, 1, 1, 1, 1]: A:=Matrix([[0, 1, 1, 1, 1, 0, 1, 0, 1], [1, 0, 1, 1, 1, 1, 0, 1, 0], [1, 1, 0, 0, 1, 1, 1, 0, 1], [1, 1, 0, 0, 1, 1, 1, 1, 0], A[5], [0, 1, 1, 1, 1, 0, 0, 1, 1], [1, 0, 1, 1, 1, 0, 0, 1, 1], [0, 1, 0, 1, 1, 1, 1, 0, 1], [1, 0, 1, 0, 1, 1, 1, 1, 0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m, k], k=1..9): od: seq(a(n), n=0..nmax);
MATHEMATICA
LinearRecurrence[{5, 8}, {1, 8}, 50] (* Vincenzo Librandi, Nov 15 2011 *)
PROG
(Magma) I:=[1, 8]; [n le 2 select I[n] else 5*Self(n-1)+8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 15 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Johannes W. Meijer, Aug 09 2010
STATUS
approved