

A180014


Decimal expansion of Pi/(2*phi^2).


1



5, 9, 9, 9, 9, 0, 8, 0, 7, 4, 3, 2, 1, 6, 3, 3, 3, 0, 5, 5, 7, 8, 8, 8, 8, 7, 6, 6, 5, 8, 4, 0, 3, 4, 6, 3, 2, 8, 1, 2, 4, 9, 7, 5, 2, 7, 6, 4, 5, 2, 8, 7, 6, 0, 7, 3, 3, 7, 7, 8, 1, 8, 7, 6, 8, 2, 8, 2, 6, 8, 3, 4, 5, 5, 9, 8, 5, 9, 6, 9, 7, 6, 9, 4, 9, 9, 0, 5, 1, 5, 1, 6, 5, 1, 4, 5, 9, 9, 0, 9, 3, 2, 8, 4, 3, 2, 4, 0, 6
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

This is the first of the three angles (in radians) of a unique triangle that is right angled and where the angles are in a Geometric Progression  pi/(2*phi^2), pi/(2*phi), pi/2. The angles (in degrees) are approx 34.377, 55.623, 90.


LINKS

Table of n, a(n) for n=0..108.


FORMULA

pi/(2*phi^2) = A019669 / A104457 = (3  sqrt(5)) * Pi/4.


EXAMPLE

0.5999908074321633305578888766584034632812497527645287607337781876828268345598596...


MATHEMATICA

RealDigits[N[Pi/(2(GoldenRatio)^2), 100]][[1]]


PROG

(PARI) Pi/4*(3sqrt(5)) \\ Charles R Greathouse IV, Jul 29 2011


CROSSREFS

Sequence in context: A086731 A147776 A020846 * A105643 A175373 A175363
Adjacent sequences: A180011 A180012 A180013 * A180015 A180016 A180017


KEYWORD

easy,nonn,cons


AUTHOR

Frank M Jackson, Aug 06 2010


EXTENSIONS

Partially edited by R. J. Mathar, Aug 07 2010
Mathematica program edited by Harvey P. Dale, Jul 10 2012


STATUS

approved



