login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A179975 Smallest k such that k*10^n is a sum of two successive primes. 11
5, 3, 1, 6, 6, 6, 14, 6, 9, 19, 21, 21, 42, 93, 21, 6, 11, 2, 12, 111, 37, 39, 63, 38, 42, 24, 15, 15, 60, 6, 39, 82, 47, 58, 337, 49, 72, 25, 34, 21, 6, 107, 128, 96, 20, 2, 63, 231, 70, 7, 62, 144, 28, 151, 157, 33, 98, 55, 134, 162, 87, 201, 124, 303, 64, 106, 130, 13, 43 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

From Robert G. Wilson v, Aug 11 2010: (Start)

A179975 n's such that a(n)=1: 3, 335, ..., .

A179975 First occurrence of k: 3, 18, 2, ???, 1, 4, 50, 162, 9, 335, 17, 19, 68, 7, 27, ..., .

Records: 5, 6, 14, 19, 21, 42, 93, 111, 337, 449, 862, 1049, 1062, 1122, 1280, 2278, 3168, 4290, ..., . (End)

LINKS

Robert G. Wilson v, Table of n, a(n) for n = 0..400.

Dario Alejandro Alpern, Brilliant numbers [From Robert G. Wilson v, Aug 11 2010]

EXAMPLE

a(0)=5 because 5=2+3

a(1)=3 because 30=13+17

a(2)=1 because 100=47+53

a(3)=6 because 6000=2999+3001.

MATHEMATICA

Join[{5, 3}, Reap[Do[Do[n=10^m k; If[n==PreviousPrime[n/2]+NextPrime[n/2], Sow[k]; Break[]], {k, 2000}], {m, 2, 50}]][[2, 1]]]

f[n_] := Block[{k = 1, tn = 10^n}, While[h = k*tn/2; NextPrime[h, -1] + NextPrime@h != k*tn, k++ ]; k]; f[1] = 3; Array[f, 70, 0] (* Robert G. Wilson v, Aug 11 2010 *)

CROSSREFS

Cf. A064397, A071220, A074924, A074925.

Cf. A033873, A033874, A005235, A055211, A038804, A084475. - Robert G. Wilson v, Aug 11 2010

Sequence in context: A023578 A111487 A011505 * A019926 A249538 A322932

Adjacent sequences:  A179972 A179973 A179974 * A179976 A179977 A179978

KEYWORD

nonn

AUTHOR

Zak Seidov, Aug 04 2010

EXTENSIONS

More terms from Robert G. Wilson v, Aug 11 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 12:30 EDT 2019. Contains 323568 sequences. (Running on oeis4.)