login
A179953
a(n) is the least exponent k such that q^k >= n, where q is the greatest prime factor of n (= A006530(n)); a(1) = 1 by convention.
1
1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 2, 2, 2, 1, 3, 2, 2, 3, 2, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 3, 1, 2, 1, 2, 3, 2, 1, 4, 2, 3, 2, 2, 1, 4, 2, 3, 2, 2, 1, 3, 1, 2, 3, 6, 2, 2, 1, 2, 2, 3, 1, 4, 1, 2, 3, 2, 2, 2, 1, 3, 4, 2, 1, 3, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 5, 1, 3, 2, 3, 1, 2, 1, 2, 3, 2
OFFSET
1,4
COMMENTS
Previous name was: a(n) is the least integer such that the greatest prime factor of n is greater than or equal to its a(n)th root.
LINKS
MATHEMATICA
Table[n = 1; m = Max[FactorInteger[x][[All, 1]]]; While[x^(1/n) > m, ++n]; n, {x, START, END}]
PROG
(PARI)
A006530(n) = if(1==n, n, vecmax(factor(n)[, 1]));
A179953(n) = { my(q = A006530(n), m = q, k=1); while(m < n, m *= q; k++); k; }; \\ Antti Karttunen, Oct 20 2017
CROSSREFS
Cf. A006530.
Sequence in context: A366989 A318322 A122810 * A277013 A305822 A326190
KEYWORD
easy,nonn
AUTHOR
Dylan Hamilton, Aug 03 2010
EXTENSIONS
a(1) = 1 prepended and definition rewritten by Antti Karttunen, Oct 20 2017
STATUS
approved