This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A179876 Numbers h such that h and h-1 have same antiharmonic mean of the numbers k < h such that GCD(k, h) = 1. 20
 2, 7, 11, 23, 47, 59, 66, 70, 78, 83, 107, 130, 167, 179, 186, 195, 211, 222, 227, 238, 255, 263, 266, 310, 322, 331, 347, 359, 366, 383, 399, 418, 438, 455, 463, 467, 470, 474, 479, 483, 494, 498, 503 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Corresponding values of numbers h-1 see A179875. a(n) = numbers h such that A175505(h) = A175505(h-1). a(n) = numbers h such that A175506(h) = A175506(h-1). Antiharmonic mean B(h) of numbers k such that GCD(k, h) = 1 for numbers h >= 1 and k < h = A053818(n) / A023896(n) = A175505(h) / A175506(h). LINKS R. J. Mathar, Table of n, a(n) for n = 1..2047 EXAMPLE For n=3: a(3) = 11; B(11) = A175505(11) / A175506(11) = 7, B(10) = A175505(10) / A175506(10) = 7. MAPLE antiHMeanGcd := proc(h)         option remember;         local a023896, a053818, k ;         a023896 := 0 ;         a053818 := 0 ;         for k from 1 to h do                 if igcd(k, h) = 1 then                         a023896 := a023896+k ;                         a053818 := a053818+k^2 ;                 end if;         end do:         a053818/a023896 ; end proc: n := 1: for h from 2 do         if antiHMeanGcd(h) = antiHMeanGcd(h-1) then                 printf("%d %d\n", n, h) ;                 n := n+1 ;         end if; end do: # R. J. Mathar, Sep 26 2013 CROSSREFS Cf. A179871 - A179880, A179882 - A179887, A179890, A179891. Sequence in context: A045374 A168032 A217304 * A088179 A228434 A031873 Adjacent sequences:  A179873 A179874 A179875 * A179877 A179878 A179879 KEYWORD nonn AUTHOR Jaroslav Krizek, Jul 30 2010, Jul 31 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 16 23:58 EDT 2018. Contains 313809 sequences. (Running on oeis4.)