

A179853


E.g.f. A(x) = Sum_{n>=0} a(n)*x^(3n)/(3n)!.


0



1, 6, 1080, 967680, 2494800000, 14122883174400, 149450965100236800, 2657377766797737984000, 73600830148552343949312000, 3000680514334863360000000000000, 172357905733383653098084542873600000, 13469219468410593291134233865512550400000
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS

Table of n, a(n) for n=0..11.
Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties, arXiv:1103.2582


FORMULA

a(n) = (n+1)^(n1)*(3*n)!/n!.
E.g.f. A(x) satisfies A(x) = Sum_{n>=0} a(n)*x^(3*n)/(3n)!
This is the special case m=3 of the following:
The e.g.f. A(x) = Sum_{n>=0} a(n)*x^(m*n)/(m*n)! satisfies A(x) = exp(x^m*A(x))
(and the corresponding terms are a(n) = (n+1)^(n1)*(m*n)!/n!).


MATHEMATICA

Table[(n+1)^(n1)(3n)!/n!, {n, 0, 20}] (* From Harvey P. Dale, Oct 19 2011 *)


PROG

(PARI)
a(n) = (n+1)^(n1)*(3*n)!/n!;
for(n=0, 30, print1(a(n), ", "));


CROSSREFS

Sequence in context: A282233 A125536 A003763 * A268043 A190351 A267071
Adjacent sequences: A179850 A179851 A179852 * A179854 A179855 A179856


KEYWORD

nonn


AUTHOR

Vladimir Kruchinin, Jan 11 2011


EXTENSIONS

More terms from Harvey P. Dale, Oct 19 2011


STATUS

approved



