login
Sum of the prime numbers that are between 10*n and 10*(n+1).
3

%I #24 Aug 24 2022 12:10:07

%S 17,60,52,68,131,112,128,223,172,97,420,113,127,407,149,308,330,352,

%T 181,780,0,211,679,472,241,508,532,548,564,293,307,941,0,668,696,712,

%U 367,752,772,397,810,419,421,1303,892,457,1391,479,487,990,1012,0,1044,0

%N Sum of the prime numbers that are between 10*n and 10*(n+1).

%C With the exception of the first term, the same as A140890. - _R. J. Mathar_, Jul 30 2010

%H Michael S. Branicky, <a href="/A179816/b179816.txt">Table of n, a(n) for n = 0..10000</a>

%F a(n) = 0 for n in A032352. - _Michel Marcus_, Aug 23 2022

%e 17 (2+3+5+7), 60 (11+13+17+19), 52 (23+29), 68 (31+37), 131 (41+43+47).

%p A179816 := proc(n) a := 0 ; for p from 10*n to 10*n+9 do if isprime(p) then a := a+p ; end if; end do: a ; end proc: seq(A179816(n),n=0..80) ; # _R. J. Mathar_, Jul 30 2010

%t f[n_] := Plus @@ Select[Range[10 n + 1, 10 n + 9], PrimeQ]; Array[f, 54, 0] (* _Robert G. Wilson v_, Aug 02 2010 *)

%o (PARI) a(n) = vecsum(select(isprime, [10*n..10*(n+1)])); \\ _Michel Marcus_, Aug 24 2022

%o (Python)

%o from sympy import primerange

%o def a(n): return sum(primerange(10*n, 10*(n+1)))

%o print([a(n) for n in range(54)]) # _Michael S. Branicky_, Aug 23 2022

%Y Cf. A000040, A032352.

%K easy,nonn

%O 0,1

%A _Odimar Fabeny_, Jul 28 2010

%E More terms from _R. J. Mathar_, Jul 30 2010

%E Name edited by _Michel Marcus_, Aug 23 2022