login
A179816
Sum of the prime numbers that are between 10*n and 10*(n+1).
3
17, 60, 52, 68, 131, 112, 128, 223, 172, 97, 420, 113, 127, 407, 149, 308, 330, 352, 181, 780, 0, 211, 679, 472, 241, 508, 532, 548, 564, 293, 307, 941, 0, 668, 696, 712, 367, 752, 772, 397, 810, 419, 421, 1303, 892, 457, 1391, 479, 487, 990, 1012, 0, 1044, 0
OFFSET
0,1
COMMENTS
With the exception of the first term, the same as A140890. - R. J. Mathar, Jul 30 2010
LINKS
FORMULA
a(n) = 0 for n in A032352. - Michel Marcus, Aug 23 2022
EXAMPLE
17 (2+3+5+7), 60 (11+13+17+19), 52 (23+29), 68 (31+37), 131 (41+43+47).
MAPLE
A179816 := proc(n) a := 0 ; for p from 10*n to 10*n+9 do if isprime(p) then a := a+p ; end if; end do: a ; end proc: seq(A179816(n), n=0..80) ; # R. J. Mathar, Jul 30 2010
MATHEMATICA
f[n_] := Plus @@ Select[Range[10 n + 1, 10 n + 9], PrimeQ]; Array[f, 54, 0] (* Robert G. Wilson v, Aug 02 2010 *)
PROG
(PARI) a(n) = vecsum(select(isprime, [10*n..10*(n+1)])); \\ Michel Marcus, Aug 24 2022
(Python)
from sympy import primerange
def a(n): return sum(primerange(10*n, 10*(n+1)))
print([a(n) for n in range(54)]) # Michael S. Branicky, Aug 23 2022
CROSSREFS
Sequence in context: A086816 A243096 A221569 * A094207 A156912 A141853
KEYWORD
easy,nonn
AUTHOR
Odimar Fabeny, Jul 28 2010
EXTENSIONS
More terms from R. J. Mathar, Jul 30 2010
Name edited by Michel Marcus, Aug 23 2022
STATUS
approved