%I #11 Sep 08 2023 22:42:12
%S 22,140,1397,3174,11585,102978,1098758,1342070,2761448,116348986,
%T 326908123,5661454305,14439547606,24195364585,44988513611,
%U 1037782490126,18907836782131,50577039498042,476237361126871,10815891488601655
%N Values y for records of the minima of the positive distance d between the ninth power of a positive integer x and the square of an integer y such that d = x^9 - y^2 (x <> k^2 and y <> k^9).
%C Distance d is equal to 0 when x = k^2 and y = k^9.
%C For d values see A179790.
%C For x values see A179791.
%C Conjecture (_Artur Jasinski_): For any positive number x >= A179791(n), the distance d between the ninth power of x and the square of any y (such that x <> k^2 and y <> k^9) can't be less than A179790(n).
%t d = 9; max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^d)^(1/2)]; k = n^d - m^2; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 10000000}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; yy
%Y Cf. A179107, A179108, A179109, A179386, A179387, A179388, A179407, A179408, A179784, A179785, A179786, A179790, A179791, A179792, A179793, A179794, A179795.
%K nonn
%O 1,1
%A _Artur Jasinski_, Jul 27 2010