login
A179786
Values y for records of the minima of the positive distance d between the seventh power of a positive integer x and the square of an integer y such that d = x^7 - y^2 (x <> k^2 and y <> k^7).
14
11, 46, 529, 1448, 3162, 10267, 24743, 35777, 116159, 147885, 370447, 1233870, 1577546, 6392774, 211053546, 264783325, 272123427, 1011697339, 1140219273, 2370360092, 49411058753, 63606986977, 71996746561757, 137783827309893
OFFSET
1,1
COMMENTS
Distance d is equal to 0 when x = k^2 and y = k^7.
For d values see A179784.
For x values see A179785.
Conjecture (Artur Jasinski): For any positive number x >= A179785(n), the distance d between the seventh power of x and the square of any y (such that x <> k^2 and y <> k^7) can't be less than A179784(n).
MATHEMATICA
d = 7; max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^d)^(1/2)]; k = n^d - m^2; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 10000000}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; yy
KEYWORD
nonn
AUTHOR
Artur Jasinski, Jul 27 2010
STATUS
approved