This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A179661 Triangle read by rows: T(n,k) is the largest least common multiple of any k-element subset of the first n positive integers. 3
 1, 2, 2, 3, 6, 6, 4, 12, 12, 12, 5, 20, 60, 60, 60, 6, 30, 60, 60, 60, 60, 7, 42, 210, 420, 420, 420, 420, 8, 56, 280, 840, 840, 840, 840, 840, 9, 72, 504, 2520, 2520, 2520, 2520, 2520, 2520, 10, 90, 630, 2520, 2520, 2520, 2520, 2520, 2520, 2520, 11, 110, 990 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Sequence differs from A093919; first divergences are at indices 31, 40, 48, 59. Main diagonal is A003418. LINKS FORMULA T(n,k) = max{ lcm(x_1,...,x_k) ; 0 < x_1 < ... < x_k <= n }. EXAMPLE Triangle begins:     [ 1 ],     [ 2, 2 ],     [ 3, 6, 6 ],     [ 4, 12, 12, 12 ],     [ 5, 20, 60, 60, 60 ],     [ 6, 30, 60, 60, 60, 60 ]. MATHEMATICA A179661[n_, k_]:=Max[LCM@@@Subsets[Range[n], {k}]]; A002260[n_]:=n-Binomial[Floor[1/2+Sqrt[2*n]], 2]; A002024[n_]:=Floor[1/2+Sqrt[2*n]]; A179661[n_]:=A179661[A002024[n], A002260[n]] PROG (MAGMA) A179661:=func< n, k | Max([ LCM(s): s in Subsets({1..n}, k) ]) >; z:=12; [ A179661(n, k): k in [1..n], n in [1..z] ]; // Klaus Brockhaus, Jan 16 2011 CROSSREFS Cf. A093919, A096179, A003418. Sequence in context: A289838 A290734 A093919 * A178888 A068424 A298484 Adjacent sequences:  A179658 A179659 A179660 * A179662 A179663 A179664 KEYWORD nonn,tabl AUTHOR Enrique Pérez Herrero, Jan 09 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 13 18:14 EDT 2019. Contains 327981 sequences. (Running on oeis4.)