login
A179602
Eight white kings and one red king on a 3 X 3 chessboard. G.f.: (1 + 2*x)/(1 - 3*x - 7*x^2).
3
1, 5, 22, 101, 457, 2078, 9433, 42845, 194566, 883613, 4012801, 18223694, 82760689, 375847925, 1706868598, 7751541269, 35202703993, 159868900862, 726025630537, 3297159197645, 14973657006694, 68001085403597, 308818855257649
OFFSET
0,2
COMMENTS
The a(n) represent the number of n-move routes of a fairy chess piece starting in a given side square (m = 2, 4, 6 or 8) on a 3 X 3 chessboard. This fairy chess piece behaves like a king on the eight side and corner squares but on the central square the king goes crazy and turns into a red king, see A179596.
The sequence above corresponds to 24 red king vectors, i.e., A[5] vectors, with decimal values 95, 119, 125, 215, 221, 245, 287, 311, 317, 347, 350, 371, 374, 377, 380, 407, 413, 437, 467, 470, 473, 476, 497 and 500. These vectors lead for the corner squares to A015524 and for the central square to A179603.
FORMULA
G.f.: (1+2*x)/(1 - 3*x - 7*x^2).
a(n) = 3*a(n-1) + 7*a(n-2) with a(0) = 1 and a(1) = 5.
a(n) = ((37+4*37^(1/2))*A^(-n-1) + (37-4*37^(1/2))*B^(-n-1))/259 with A = (-3+sqrt(37))/14 and B = (-3-sqrt(37))/14.
MAPLE
with(LinearAlgebra): nmax:=22; m:=2; A[1]:= [0, 1, 0, 1, 1, 0, 0, 0, 0]: A[2]:= [1, 0, 1, 1, 1, 1, 0, 0, 0]: A[3]:= [0, 1, 0, 0, 1, 1, 0, 0, 0]: A[4]:=[1, 1, 0, 0, 1, 0, 1, 1, 0]: A[5]:= [1, 1, 1, 0, 1, 0, 0, 1, 1]: A[6]:= [0, 1, 1, 0, 1, 0, 0, 1, 1]: A[7]:= [0, 0, 0, 1, 1, 0, 0, 1, 0]: A[8]:= [0, 0, 0, 1, 1, 1, 1, 0, 1]: A[9]:= [0, 0, 0, 0, 1, 1, 0, 1, 0]: A:=Matrix([A[1], A[2], A[3], A[4], A[5], A[6], A[7], A[8], A[9]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m, k], k=1..9): od: seq(a(n), n=0..nmax);
MATHEMATICA
CoefficientList[Series[(1+2x)/(1-3x-7x^2), {x, 0, 40}], x] (* or *) LinearRecurrence[ {3, 7}, {1, 5}, 40] (* Harvey P. Dale, Mar 28 2013 *)
CROSSREFS
Cf. A126473 (side squares).
Sequence in context: A033452 A346772 A295519 * A262440 A296044 A048251
KEYWORD
easy,nonn
AUTHOR
Johannes W. Meijer, Jul 28 2010
STATUS
approved