The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A179598 Eight white kings and one red king on a 3 X 3 chessboard. G.f.: (1 + 2*x)/(1 - 3*x - 8*x^2). 3
 1, 5, 23, 109, 511, 2405, 11303, 53149, 249871, 1174805, 5523383, 25968589, 122092831, 574027205, 2698824263, 12688690429, 59656665391, 280479519605, 1318691881943, 6199911802669, 29149270463551, 137047105812005 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The a(n) represent the number of n-move routes of a fairy chess piece starting in a given side square (m = 2, 4, 6 or 8) on a 3 X 3 chessboard. This fairy chess piece behaves like a king on the eight side and corner squares but on the central square the king goes crazy and turns into a red king, see A179596. The sequence above corresponds to 10 red king vectors, i.e., A[5] vectors, with decimal values 239, 351, 375, 381, 431, 471, 477, 491, 494, and 501. These vectors lead for the corner squares to A015525 and for the central square to A179599. Inverse binomial transform of A126501. LINKS FORMULA G.f.: (1+2*x)/(1 - 3*x - 8*x^2). a(n) = 3*a(n-1) + 8*a(n-2) with a(0) = 1 and a(1) = 5. a(n) = ((41+5*sqrt(41))*A^(-n-1) + (41-5*sqrt(41))*B^(-n-1))/328 with A = (-3+sqrt(41))/16 and B = (-3-sqrt(41))/16. MAPLE with(LinearAlgebra): nmax:=21; m:=2; A[1]:= [0, 1, 0, 1, 1, 0, 0, 0, 0]: A[2]:= [1, 0, 1, 1, 1, 1, 0, 0, 0]: A[3]:= [0, 1, 0, 0, 1, 1, 0, 0, 0]: A[4]:=[1, 1, 0, 0, 1, 0, 1, 1, 0]: A[5]:= [1, 0, 1, 1, 1, 1, 1, 0, 1]: A[6]:= [0, 1, 1, 0, 1, 0, 0, 1, 1]: A[7]:= [0, 0, 0, 1, 1, 0, 0, 1, 0]: A[8]:= [0, 0, 0, 1, 1, 1, 1, 0, 1]: A[9]:= [0, 0, 0, 0, 1, 1, 0, 1, 0]: A:=Matrix([A[1], A[2], A[3], A[4], A[5], A[6], A[7], A[8], A[9]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m, k], k=1..9): od: seq(a(n), n=0..nmax); CROSSREFS Cf. A126473 (side squares). Sequence in context: A126473 A238112 A109877 * A192810 A278677 A017974 Adjacent sequences:  A179595 A179596 A179597 * A179599 A179600 A179601 KEYWORD easy,nonn AUTHOR Johannes W. Meijer, Jul 28 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 7 23:38 EDT 2020. Contains 336279 sequences. (Running on oeis4.)