This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A179542 Trajectory of 1 under the morphism 1->(1,2,3), 2->(1,2), 3->(1) related to the heptagon and A006356. 1
 1, 1, 2, 3, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Given M = the generating matrix for the heptagon shown in A006356: [1,1,1; 1,1,0; 1,0,0] take powers of M, extracting top row getting: (1,1,1), (3,2,1), (6,5,3), (14,11,6), where left and right columns (offset) = A006356, and middle column = A006054. n-th iterate of the sequence is composed of A006356(n) terms parsed into a frequency of 1's, 2's, and 3's matching the 3-termed vectors with appropriate sums. LINKS P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31. EXAMPLE Starting with 1, the next two iterates are: (1, 2, 3) -> (1, 2, 3, 1, 2, 1) -> (1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 3). The 3rd iterate has 14 terms composed of six 1's, five 2's, and three 3's; matching the top row of M^3 = (6, 5, 3), sum = 14 = A006356(3). MATHEMATICA NestList[ Flatten[ # /. {1 -> {1, 2, 3}, 2 -> {1, 2}, 3 -> 1}] &, {1}, 5] // Flatten (* Robert G. Wilson v, Jul 23 2010 *) CROSSREFS Cf. A006356, A006054 Sequence in context: A047896 A073645 A294180 * A082846 A117373 A132677 Adjacent sequences:  A179539 A179540 A179541 * A179543 A179544 A179545 KEYWORD nonn AUTHOR Gary W. Adamson, Jul 18 2010 EXTENSIONS More terms from Robert G. Wilson v, Jul 23 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 08:57 EDT 2019. Contains 328345 sequences. (Running on oeis4.)