login
A179530
Smallest of 12 consecutive numbers containing exactly n terms of A083207.
1
7, 1, 17, 19, 489, 116859
OFFSET
1,1
COMMENTS
A179529(a(n)) = n and A179529(m) <> n for m < a(n);
SUM(A179527(k): a(n) <= k < a(n)+12) = n;
by definition the sequence is finite with at most 12 terms.
EXAMPLE
a(3)=17: A179529(17) = #{20,24,28} = #{A083207(3),A083207(4),A083207(5)} = 3;
a(4)=19: A179529(19) = #{20,24,28,30} = #{A083207(3),A083207(4),A083207(5),A083207(6)} = 4;
a(5)=489: A179529(489) = #{490,492,496,498,500} = #{A083207(107),A083207(108),A083207(109),A083207(110),A083207(111)} = 5.
For a(6), the six Zumkeller numbers are 116860, 116862, 116864, 116865, 116868, and 116870. [From T. D. Noe, Aug 22 2010]
CROSSREFS
Cf. A179528.
Sequence in context: A317016 A348983 A013614 * A098081 A125234 A028325
KEYWORD
fini,more,nonn
AUTHOR
Reinhard Zumkeller, Jul 19 2010
EXTENSIONS
a(6) from T. D. Noe, Aug 22 2010
STATUS
approved