This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A179495 E.g.f. satisfies: A'(x) = [A(x)^2 + A(x)^3]/(x^2 + x^3). 2
 0, 1, 2, 12, 84, 820, 9540, 132888, 2129232, 38760048, 788500800, 17740459440, 437238410400, 11716457100192, 339129808346784, 10544636706428160, 350515939418507520, 12404398847785793280, 465618362609300313600 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS A179495(n) = n * A179496(n-1). - Vaclav Kotesovec, Dec 25 2013 REFERENCES Roland Bacher, Counting Packings of Generic Subsets in Finite Groups, Electr. J. Combinatorics, 19 (2012), #P7. - From N. J. A. Sloane, Feb 06 2013 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 FORMULA E.g.f. satisfies: d/dx A_n(x) = [A_n(x)^2 + A_n(x)^3]/(x^2 + x^3) where A_n(x) denotes the n-th iteration of e.g.f. A(x). ... Define a triangular matrix where the e.g.f. of column k equals (A(x)/x)^k, then the matrix log is the matrix L with L(n+1,n)=L(n+2,n)=n+1 and zeros elsewhere. a(n) ~ sqrt(1+r) * n^n * r^(n-1) / exp(n), where r = -1-LambertW(-1, -exp(-2)) = 2.146193220620582585237... is the root of the equation log(1+r)=r-1. - Vaclav Kotesovec, Jan 04 2014 EXAMPLE E.g.f. A(x) = x + 2*x^2/2! + 12*x^3/3! + 84*x^4/4! + 820*x^5/5! +... Related expansions: A(x)^2 + A(x)^3 = 2*x^2/2! + 18*x^3/3! + 192*x^4/4! + 2400*x^5/5! +... A'(x) = 1 + 2*x + 12*x^2/2! + 84*x^3/3! + 820*x^4/4! + 9540*x^5/5! +... A(x)/x = 1 + x + 4*x^2/2! + 21*x^3/3! + 164*x^4/4! + 1590*x^5/5! +... ... Define a triangular matrix where the e.g.f. of column k equals A(x)^k: 1; 1, 1; 4/2!, 2, 1; 21/3!, 10/2!, 3, 1; 164/4!, 66/3!, 18/2!, 4, 1; 1590/5!, 592/4!, 141/3!, 28/2!, 5, 1; 18984/6!, 6500/5!, 1428/4!, 252/3!, 40/2!, 6, 1; 266154/7!, 85548/6!, 17430/5!, 2840/4!, 405/3!, 54/2!, 7, 1; ... then the matrix log of the above matrix equals: 0; 1, 0; 1, 2, 0; 0, 2, 3, 0; 0, 0, 3, 4, 0; 0, 0, 0, 4, 5, 0; 0, 0, 0, 0, 5, 6, 0; ... MATHEMATICA nmax = 20; aa = ConstantArray[0, nmax]; aa[[1]] = 1; aa[[2]] = 2; Do[AGF = Sum[aa[[n]]*x^n/n!, {n, 1, j - 1}] + koef*x^j/j!; sol = Solve[Coefficient[D[AGF, x]*(x^2 + x^3) - (AGF^2 + AGF^3), x, j + 1] == 0, koef][[1]]; aa[[j]] = koef /. sol[[1]], {j, 3, nmax}]; Flatten[{0, aa}] (* Vaclav Kotesovec, Dec 25 2013 *) PROG (PARI) {a(n)=local(A=x+x^2+O(x^(n+1)), D=1); n!*polcoeff(1+sum(m=1, n+1, (D=A*deriv(x*D+O(x^(n+1))))/m!), n-1)} CROSSREFS Cf. A179496. Sequence in context: A052887 A052867 A226238 * A208977 A097237 A055531 Adjacent sequences:  A179492 A179493 A179494 * A179496 A179497 A179498 KEYWORD nonn AUTHOR Paul D. Hanna, Jul 25 2010 EXTENSIONS Minor edits Vaclav Kotesovec, Mar 31 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.