login
A179491
L.g.f.: G(x) = exp( Sum_{n>=1} a(n)*x^n/n ) where G(x) = exp( Sum_{n>=1} G(a(n)*x^n)*x^n/n ).
1
1, 3, 7, 23, 51, 201, 442, 1663, 4156, 15083, 35564, 139961, 329694, 1244834, 3162552, 11494207, 28340038, 108476634, 266695553, 992977283, 2544862201, 9319498334, 23550935216, 87424092169, 222620040051, 819109845024
OFFSET
0,2
EXAMPLE
L.g.f.: Log(G(x)) = x + 3*x^2/2 + 7*x^3/3 + 23*x^4/4 + 51*x^5/5 + 201*x^6/6 + 442*x^7/7 + 1663*x^8/8 + 4156*x^9/9 +...+ a(n)*x^n/n +...
G(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 22*x^5 + 63*x^6 + 148*x^7 + 429*x^8 + 1093*x^9 + 3233*x^10 + 8235*x^11 +...+ A179490(n)*x^n +...
Log(G(x)) = G(x)*x + G(3*x^2)*x^2/2 + G(7*x^3)*x^3/3 + G(23*x^4)*x^4/4 + G(51*x^5)*x^5/5 + G(201*x^6)*x^6/6 +...+ G(a(n)*x^n)*x^n/n +...
PROG
(PARI) {a(n)=local(A=[1, 1], L=[1]); for(i=1, n+1, A=Vec(exp(sum(n=1, #A-1, subst(Ser(A), x, L[n]*x^n)*x^n/n)+O(x^#A))); A=concat(A, 0); L=Vec(deriv(log(Ser(A))))); L[n+1]}
CROSSREFS
Cf. A179490.
Sequence in context: A112052 A205491 A203253 * A219167 A293466 A231722
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 16 2010
STATUS
approved