login
A179485
Sums of two successive primes s such that s+-3 are primes.
1
8, 100, 1120, 1220, 1300, 2240, 2380, 2414, 3536, 3634, 4906, 4940, 5566, 5740, 6706, 7240, 8864, 9224, 9394, 10136, 10850, 12040, 12476, 12586, 12920, 13180, 13334, 13754, 14630, 14720, 15134, 16270, 17710, 18430, 18800, 19916, 21014, 21320
OFFSET
1,1
COMMENTS
Intersection of A001043 and A087695. - Robert Israel, Oct 25 2017
LINKS
EXAMPLE
3+5=8,8-3=5(prime),8+3=11(prime),..
MAPLE
q:= 2; p:= 3;
count:= 0:
while count < 100 do
q:= p; p:= nextprime(p);
s:= q+p;
if isprime(s-3) and isprime(s+3) then
count:= count+1; A[count]:= s;
fi
od:
seq(A[i], i=1..count); # Robert Israel, Oct 25 2017
MATHEMATICA
q=3; Select[Table[Prime[n]+Prime[n+1], {n, 7!}], PrimeQ[ #-q]&&PrimeQ[ #+q]&]
Select[Total/@Partition[Prime[Range[1400]], 2, 1], AllTrue[#+{3, -3}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 04 2018 *)
KEYWORD
nonn
AUTHOR
STATUS
approved