login
Antonym of A014824: each term is 10 times the previous term minus n.
1

%I #19 Mar 25 2017 09:59:42

%S 10,99,988,9877,98766,987655,9876544,98765433,987654322,9876543211,

%T 98765432100,987654320989,9876543209878,98765432098767,

%U 987654320987656,9876543209876545,98765432098765434,987654320987654323,9876543209876543212,98765432098765432101

%N Antonym of A014824: each term is 10 times the previous term minus n.

%H Colin Barker, <a href="/A179477/b179477.txt">Table of n, a(n) for n = 0..998</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (12,-21,10).

%F a(n) + A014824(n) = 10^(n+1).

%F From _Colin Barker_, Oct 03 2015: (Start)

%F a(n) = 12*a(n-1) - 21*a(n-2) + 10*a(n-3) for n>2.

%F G.f.: -(10*x^2-21*x+10) / ((x-1)^2*(10*x-1)).

%F (End)

%F a(n) = (10 + 2^(5+n)*5^(2+n) + 9*n)/81. - _Colin Barker_, Mar 25 2017

%t Join[{a=10,b=99},Table[c=11*b-10*a-1;a=b;b=c,{n,60}]] (* _Vladimir Joseph Stephan Orlovsky_, Jan 20 2011*)

%t Join[{a=10}, Table[a=10a-n, {n,60}] (* _T. D. Noe_, Jan 20 2011 *)

%o (PARI) Vec(-(10*x^2-21*x+10)/((x-1)^2*(10*x-1)) + O(x^30)) \\ _Colin Barker_, Oct 03 2015

%Y Cf. A014824.

%K nonn,easy

%O 0,1

%A _Mark Dols_, Jul 16 2010