login
Triangle read by rows: number of permutation trees of power n and width <= k.
3

%I #17 Jul 13 2022 18:42:18

%S 1,1,2,1,5,6,1,12,23,24,1,27,93,119,120,1,58,360,662,719,720,1,121,

%T 1312,3728,4919,5039,5040,1,248,4541,20160,35779,40072,40319,40320,1,

%U 503,15111,103345,259535,347769,362377,362879,362880

%N Triangle read by rows: number of permutation trees of power n and width <= k.

%C Partial row sums of A008292 (triangle of Eulerian numbers).

%C Given by a very similar formula.

%C Special case: A179457(n,2) = A000325(n) for n > 1 (Grassmannian permutations).

%D Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 533.

%H Jennifer Elder, Nadia Lafrenière, Erin McNicholas, Jessica Striker and Amanda Welch, <a href="https://doi.org/10.48550/arxiv.2206.13409">Homomesies on permutations -- an analysis of maps and statistics in the FindStat database</a>, math.CO, arXiv, 2022. (Def. 4.20 and Prop. 4.22.)

%H Peter Luschny, <a href="http://www.oeis.org/wiki/User:Peter_Luschny/PermutationTrees">Permutation Trees</a>.

%F T(n,k) = sum( ((-1)^j*(k-j)^(n+1))*binomial(n+1,j),j=0..k) - _Olivier Gérard_, Aug 04 2012

%e 1;

%e 1, 2;

%e 1, 5, 6;

%e 1, 12, 23, 24;

%e 1, 27, 93, 119, 120;

%e 1, 58, 360, 662, 719, 720;

%e 1, 121, 1312, 3728, 4919, 5039, 5040;

%e 1, 248, 4541, 20160, 35779, 40072, 40319, 40320;

%e 1, 503, 15111, 103345, 259535, 347769, 362377, 362879, 362880;

%p Eulerian:= (n,k)-> sum((-1)^j*(k-j+1)^n * binomial(n+1,j),j=0..k+1):

%p s:=(j,n)-> sum(Eulerian(j,k-1), k=1..n):

%p for i from 1 to 15 do print(seq(s(i,n),n=1..i)) od; # _Gary Detlefs_, Nov 18 2011

%t Flatten[Table[Table[Sum[(-1)^j (k-j)^(n+1) Binomial[n+1, j], {j, 0, k}], {k, 1, n + 1}], {n, 0, 10}], 1] (* _Olivier Gérard_, Aug 04 2012 *)

%Y Cf. A008292.

%Y Row sums sequence is 1,3,12,... A001710(n+1) = (n+1)!/2. - _Olivier Gérard_, Aug 04 2012

%K nonn,tabl

%O 1,3

%A _Peter Luschny_, Aug 11 2010