

A179452


Decimal expansion of sqrt(5 + 2*sqrt(5))/2, the height of a regular pentagon and midradius of an icosidodecahedron with side length 1.


16



1, 5, 3, 8, 8, 4, 1, 7, 6, 8, 5, 8, 7, 6, 2, 6, 7, 0, 1, 2, 8, 5, 1, 4, 5, 2, 8, 8, 0, 1, 8, 4, 5, 4, 9, 1, 2, 0, 0, 3, 3, 5, 1, 0, 7, 1, 7, 6, 8, 8, 9, 6, 2, 1, 3, 5, 1, 9, 5, 7, 8, 1, 2, 5, 1, 8, 7, 4, 3, 1, 6, 4, 4, 2, 4, 7, 5, 4, 5, 4, 5, 9, 2, 2, 7, 2, 9, 6, 8, 6, 0, 8, 3, 3, 5, 5, 2, 7, 1, 7, 6, 3, 5, 9, 5
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Icosidodecahedron: 32 faces, 30 vertices, and 60 edges.
Height of a regular pentagon with side length 1.  Jared Kish, Oct 16 2014


LINKS

Table of n, a(n) for n=1..105.
Eric Weisstein's World of Mathematics, Icosidodecahedron
Eric Weisstein's World of Mathematics, Pentagon


FORMULA

Equals sqrt(5+2*sqrt(5))/2.


EXAMPLE

1.53884176858762670128514528801845491200335107176889621351957812518743...


MAPLE

sqrt(5+2*sqrt(5.))/2


MATHEMATICA

RealDigits[Sqrt[5+2Sqrt[5]]/2, 10, 120][[1]] (* Harvey P. Dale, Jun 23 2017 *)


PROG

(PARI) sqrt(5+2*sqrt(5))/2


CROSSREFS

Cf. A010527, A102208, A179290, A179292, A179294, A179449, A179450, A179451.
Sequence in context: A161488 A010484 A174930 * A079810 A300884 A092748
Adjacent sequences: A179449 A179450 A179451 * A179453 A179454 A179455


KEYWORD

nonn,cons,easy


AUTHOR

Vladimir Joseph Stephan Orlovsky, Jul 14 2010


EXTENSIONS

Partially rewritten by Charles R Greathouse IV, Feb 03 2011
Edited by M. F. Hasler, Oct 16 2014


STATUS

approved



