This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A179420 E.g.f. A(x) satisfies: A(A(x)) = x*A'(x) with A(0)=0, A'(0)=1. 16
 0, 1, 2, 12, 132, 2200, 50280, 1482768, 54171376, 2381590944, 123292821600, 7390709937600, 506182300962624, 39180896544097152, 3396777800819754624, 327323946734658720000, 34831825328790915321600 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Paul D. Hanna, Table of n, a(n) for n = 0..150 FORMULA E.g.f. A(x) equals the e.g.f. of column 0 in the matrix log of the Riordan array (A(x)/x, A(x)). Let A_n(x) denote the n-th iteration of e.g.f. A(x) with A_0(x)=x, then A=A(x) satisfies: A(x)/x = 1 + A + A*Dx(A)/2! + A*Dx(A*Dx(A))/3! + A*Dx(A*Dx(A*Dx(A)))/4! +... A_{-1}(x)/x = 1 - A + A*Dx(A)/2! - A*Dx(A*Dx(A))/3! + A*Dx(A*Dx(A*Dx(A)))/4! -+... A_n(x)/x = 1 + n*A + n^2*A*Dx(A)/2! + n^3*A*Dx(A*Dx(A))/3! + n^4*A*Dx(A*Dx(A*Dx(A)))/4! +... where Dx(F) = d/dx(x*F). Further, we have: A(x) = A_{n+1}(x) * A_n(x)/[x*d/dx A_n(x)] which holds for all n. a(n)=sum(k=2..n-1, R(n-1,k-1)*a(k))/(n-2), n>2, a(1)=1, a(2)=1, where R is the Riordan array (A(x)/x, A(x)). [From Vladimir Kruchinin, Jun 29 2011] E.g.f. satisfies: A(x) = Series_Reversion(-G(-x)) where G(x) is the e.g.f. of A193202 and satisfies: G(G(x)) = x*G'(G(x)). [From Paul D. Hanna, Jul 22 2011] EXAMPLE E.g.f.: A(x) = x + 2*x^2/2! + 12*x^3/3! + 132*x^4/4! + 2200*x^5/5! +... E.g.f. satisfies: A(A(x)) = x*A'(x) where: A'(x) = 1 + 2*x + 12*x^2/2! + 132*x^3/3! + 2200*x^4/4! +... A(A(x)) = x + 4*x^2/2! + 36*x^3/3! + 528*x^4/4! + 11000*x^5/5! +... Related expansions begin: A*Dx(A)/2! = 2*x^2/2! + 15*x^3/3! + 180*x^4/4! + 3150*x^5/5! +... A*Dx(A*Dx(A))/3! = 6*x^3/3! + 104*x^4/4! + 2140*x^5/5! +... A*Dx(A*Dx(A*Dx(A)))/4! = 24*x^4/4! + 770*x^5/5! + 24600*x^6/6! +... A*Dx(A*Dx(A*Dx(A*Dx(A))))/5! = 120*x^5/5! + 6264*x^6/6! +... which generate iterations of A=A(x) as illustrated by: A(A(x))/x = 1 + 2*A + 2^2*A*Dx(A)/2! + 2^3*A*Dx(A*Dx(A))/3! +... A(A(A(x)))/x = 1 + 3*A + 3^2*A*Dx(A)/2! + 3^3*A*Dx(A*Dx(A))/3! +... A_{-1}(x)/x = 1 - A + A*Dx(A)/2! - A*Dx(A*Dx(A))/3! +-...(inverse). Illustrate a main property of the iterations A_n(x) of A(x) by: A(x) = A(A(x)) * A(x)/[x*d/dx A(x)]; A(x) = A_3(x) * A_2(x)/[x*d/dx A_2(x)]; A(x) = A_4(x) * A_3(x)/[x*d/dx A_3(x)]; ... which can be shown consistent by the chain rule of differentiation. ... The RIORDAN ARRAY (A(x)/x, A(x)) begins: . 1; . 1, 1; . 4/2!, 2, 1; . 33/3!, 10/2!, 3, 1; . 440/4!, 90/3!, 18/2!, 4, 1; . 8380/5!, 1240/4!, 177/3!, 28/2!, 5, 1; . 211824/6!, 23800/5!, 2544/4!, 300/3!, 40/2!, 6, 1; . 6771422/7!, 598788/6!, 49680/5!, 4520/4!, 465/3!, 54/2!, 7, 1; ... where the e.g.f. of column k = A(x)^(k+1)/x for k>=0. ... The MATRIX LOG of the above Riordan array (A(x)/x, A(x)) begins: . 0; . 1, 0; . 2/2!, 2, 0; . 12/3!, 4/2!, 3, 0; . 132/4!, 24/3!, 6/2!, 4, 0; . 2200/5!, 264/4!, 36/3!, 8/2!, 5, 0; . 50280/6!, 4400/5!, 396/4!, 48/3!, 10/2!, 6, 0; . 1482768/7!, 100560/6!, 6600/5!, 528/4!, 60/3!, 12/2!, 7, 0; ... where the e.g.f. of column k = (k+1)*A(x) for k>=0. PROG (PARI) {a(n)=local(A=x+x^2+sum(m=3, n-1, a(m)*x^m/m!)+x*O(x^n)); if(n<3, n!*polcoeff(A, n), n!*polcoeff(subst(A, x, A), n)/(n-2))} (Maxima) Co(n, k, F):=if k=1  then F(n) else sum(F(i+1)*Co(n-i-1, k-1, F), i, 0, n-k); a(n):=if n=0 then 0 else if n<3 then 1 else sum(Co(n, k, a)*a(k), k, 2, n-1)/(n-2); [From Vladimir Kruchinin, Jun 29 2011] CROSSREFS Cf. A193202, A179421, A179422, A179423, A179424, variant: A179320. Cf. A221019(n)/A221020(n) = a(n)/n!. Sequence in context: A266489 A208830 A132472 * A080487 A077696 A117271 Adjacent sequences:  A179417 A179418 A179419 * A179421 A179422 A179423 KEYWORD eigen,nonn AUTHOR Paul D. Hanna, Jul 13 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.