login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A179385 The n-th term is the sum of all the 1's generated from all the combinations of prime numbers and ones possible, that add to n, when each prime is only allowed once and any number of ones are allowed. 1

%I

%S 1,2,4,7,10,15,20,27,35,44,55,67,81,97,115,135,158,183,212,244,280,

%T 320,364,413,467,526,591,661,737,820,909,1007,1112,1226,1349,1481,

%U 1624,1778,1943,2121,2311,2515,2734,2968,3219,3486,3771,4075,4399,4744,5112,5502

%N The n-th term is the sum of all the 1's generated from all the combinations of prime numbers and ones possible, that add to n, when each prime is only allowed once and any number of ones are allowed.

%H Alois P. Heinz, <a href="/A179385/b179385.txt">Table of n, a(n) for n = 1..10000</a> (first 175 terms from Robert G. Wilson v)

%F a(n) = Sum_{k=1..n} k * A000586(n-k). - _Max Alekseyev_, Jul 14 2010

%e n=7 gives 11111 11, 2111 11, 311 11, 5 11, 5 2, 32 11. (Grouped in 5's) no. of 1's: 7, 5, 4, 2, 0, 2. Sum is 20, therefore a(7) = 20.

%e n=12 gives 11111 11111 11, 11111 11111 2, 11111 311 11, 11111 32 11, 11111 5 11, 5 2111 11, 5 311 11, 5 32 11, 7111 11, 721 11, 73 11, 73 2, 75, eleven 1, no. of 1's: 12, 10, 9, 7, 7, 5, 4, 2, 5, 3, 2, 0, 0, 1. Sum is 67, therefore a(12) = 67.

%e 1: 1 => 1 2: 11, 2 => 2 3: 111, 21 => 4 4: 1111, 211, 22, 31 => 7 5: 11111, 2111, 311, 23 => 10 6: 11111 1, 2111 1, 311 1, 23 1, 5 1 => 15 and so on.

%p b:= proc(n,i) option remember; if n<=0 then 0 elif i=0 then n else b(n, i-1) +b(n-ithprime(i), i-1) fi end: # _R. J. Mathar_, Jul 14 2010

%p a:= n-> b(n, numtheory[pi](n)): seq(a(n), n=1..80); # _Alois P. Heinz_

%t fQ[lst_List] := Sort@ Flatten@ Most@ Split@ lst == Rest@ Union@ lst; f[n_] := Sum[ Count[ Select[ IntegerPartitions[n, {k}, Join[{1}, Prime@ Range@ PrimePi@n]], fQ@# &], 1, 2], {k, n}]; Array[f, 50]

%t (* second program: *)

%t b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + If[Prime[i] > n, 0, b[n - Prime[i], i - 1]]]];

%t a[n_] := Sum[k*b[n - k, PrimePi[n - k]], {k, 1, n}];

%t Table[a[n], {n, 1, 80}] (* _Jean-Fran├žois Alcover_, Aug 29 2016, after _Alois P. Heinz_ *)

%o (PARI) a(n) = my(r); r = x/(1-x)^2 + O(x^(n+1)); forprime(p=2,n,r*=1+x^p); polcoeff(r,n) \\ _Max Alekseyev_, Jul 14 2010

%Y Cf. A000070, A024786, A024787, A024788, A024789, A024790, A024791, A024792, A024793, A024794. - _Robert G. Wilson v_, Jul 14 2010

%K nonn

%O 1,2

%A _Joseph Foley_, Jul 12 2010

%E Corrected and extended by _R. J. Mathar_, Jul 14 2010

%E I changed the Mathematica coding to be more efficient _Robert G. Wilson v_, Jul 20 2010

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 14:44 EDT 2019. Contains 328318 sequences. (Running on oeis4.)