login
A179311
Decimal expansion of the real part of zeta(i), where i = sqrt(-1).
6
0, 0, 3, 3, 0, 0, 2, 2, 3, 6, 8, 5, 3, 2, 4, 1, 0, 2, 8, 7, 4, 2, 1, 7, 1, 1, 4, 2, 1, 0, 1, 3, 4, 5, 6, 5, 9, 7, 1, 4, 8, 9, 6, 4, 7, 2, 4, 0, 2, 7, 8, 3, 5, 5, 0, 2, 4, 6, 9, 2, 3, 9, 6, 1, 6, 2, 9, 3, 1, 6, 7, 6, 4, 1, 1, 6
OFFSET
0,3
COMMENTS
With zeta being the Riemann zeta function. Also the real part of zeta(-i). Bhatt's documentation for MathTools incorrectly identifies this constant as the real part of zeta(1 - i) (however the other example zeta values given are correct).
EXAMPLE
zeta(i) = 0.00330022 - 0.41815545i (to eight decimal places on both parts).
MATHEMATICA
RealDigits[N[Re[Zeta[I]], 75]][[1]]
PROG
(PARI) real(zeta(I)) \\ Michel Marcus, Jun 14 2019
CROSSREFS
Cf. A179836 (imaginary part).
Sequence in context: A298259 A298930 A298895 * A309983 A342697 A360480
KEYWORD
nonn,cons
AUTHOR
Alonso del Arte, Jan 07 2011
STATUS
approved