login
Decimal expansion of 2*sqrt(Pi)/3^(1/4).
1

%I #10 Oct 01 2022 14:06:52

%S 2,6,9,3,5,4,7,3,7,4,1,7,7,1,9,6,7,2,1,2,3,8,1,6,0,4,7,5,0,9,2,3,2,8,

%T 6,6,7,0,8,8,6,7,0,8,0,7,3,0,8,0,1,5,8,9,2,3,9,9,2,0,6,6,4,5,4,9,5,1,

%U 9,1,6,0,7,3,0,5,1,8,2,0,1,2,8,0,3,3,1,3,2,6,0,1,2,3,1,0,3,8,4,6,1,5,4,5,8

%N Decimal expansion of 2*sqrt(Pi)/3^(1/4).

%C Also the side length of an equilateral triangle with area Pi (A000796), the area of a unit circle.

%C The area of an equilateral triangle with side length s is (sqrt(3)/4)s^2 = A120011*s^2, so A120011*(this constant)^2 = A000796.

%H G. C. Greubel, <a href="/A179275/b179275.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>

%F 2*sqrt(Pi)/3^(1/4) = 2*A002161/A011002.

%e 2.693547374177196721238160475092328667088670807308015892399206645495191607305...

%t RealDigits[2*Sqrt[Pi]/3^(1/4), 10, 100][[1]] (* _G. C. Greubel_, Mar 24 2017 *)

%o (PARI) 2*sqrt(Pi)/3^(1/4)

%Y Cf. A002161 (sqrt(Pi)), A011002 (3^1/4), A000796 (Pi), A002194 (sqrt(3)), A120011 (sqrt(3)/4).

%K cons,nonn

%O 1,1

%A _Rick L. Shepherd_, Jul 07 2010