login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A179254 Number of partitions of n into distinct parts such that the successive differences of consecutive parts are strictly increasing. 13
1, 1, 1, 2, 2, 3, 3, 5, 5, 6, 8, 9, 9, 13, 14, 15, 19, 21, 22, 28, 30, 32, 39, 42, 44, 54, 58, 61, 72, 77, 82, 96, 102, 108, 124, 133, 141, 160, 171, 180, 203, 218, 230, 256, 273, 289, 320, 342, 361, 395, 423, 447, 486, 520, 548, 594, 635, 669, 721, 769, 811, 871, 928, 978, 1044, 1114 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Partitions into distinct parts (p(1), p(2), ..., p(m)) such that p(k-1) - p(k-2) <  p(k) - p(k-1) for all k >= 3.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 225 terms from Joerg Arndt)

EXAMPLE

There are a(17) = 21 such partitions of 17:

01:  [ 1 2 4 10 ]

02:  [ 1 2 5 9 ]

03:  [ 1 2 14 ]

04:  [ 1 3 13 ]

05:  [ 1 4 12 ]

06:  [ 1 5 11 ]

07:  [ 1 16 ]

08:  [ 2 3 12 ]

09:  [ 2 4 11 ]

10:  [ 2 5 10 ]

11:  [ 2 15 ]

12:  [ 3 4 10 ]

13:  [ 3 5 9 ]

14:  [ 3 14 ]

15:  [ 4 5 8 ]

16:  [ 4 13 ]

17:  [ 5 12 ]

18:  [ 6 11 ]

19:  [ 7 10 ]

20:  [ 8 9 ]

21:  [ 17 ]

- Joerg Arndt, Mar 31 2014

PROG

(Sage)

def A179254(n):

    has_increasing_diffs = lambda x: min(differences(x, 2)) >= 1

    allowed = lambda x: len(x) < 3 or has_increasing_diffs(x)

    return len([x for x in Partitions(n, max_slope=-1) if allowed(x[::-1])])

# D. S. McNeil, Jan 06 2011_

(Ruby)

def partition(n, min, max)

  return [[]] if n == 0

  [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i - 1).map{|rest| [i, *rest]}}

end

def f(n)

  return 1 if n == 0

  cnt = 0

  partition(n, 1, n).each{|ary|

    ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]}

    cnt += 1 if ary0.sort == ary0.reverse && ary0.uniq == ary0

  }

  cnt

end

def A179254(n)

  (0..n).map{|i| f(i)}

end

p A179254(50) # Seiichi Manyama, Oct 12 2018

CROSSREFS

Cf. A007294, A179255 (nondecreasing differences), A179269, A320382, A320385.

Cf. A240026 (partitions with nondecreasing differences), A240027 (partitions with strictly increasing differences).

Sequence in context: A240542 A342516 A325391 * A304430 A086609 A341140

Adjacent sequences:  A179251 A179252 A179253 * A179255 A179256 A179257

KEYWORD

nonn

AUTHOR

Joerg Arndt, Jan 05 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 00:56 EDT 2021. Contains 343197 sequences. (Running on oeis4.)