login
A179181
'PE(n,k)' triangle read by rows. PE(n,k) is the number of k-palindromes of n up to cyclic equivalence.
3
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 2, 1, 1, 1, 1, 0, 3, 0, 3, 0, 1, 1, 1, 3, 2, 3, 2, 1, 1, 1, 0, 4, 0, 6, 0, 4, 0, 1, 1, 1, 4, 2, 6, 4, 4, 2, 1, 1, 1, 0, 5, 0, 10, 0, 10, 0, 5, 0, 1, 1, 1, 5, 3, 10, 6, 10, 5, 5, 3, 1, 1
OFFSET
1,13
COMMENTS
A k-composition of n is an ordered collection of k positive integers (parts) which sum to n.
Two k-compositions of n are cyclically equivalent if one can be obtained from the other by a cyclic permutation of its parts.
A k-palindrome of n is a k-composition of n which is a palindrome.
Let PE(n,k) denote the number of k-palindromes of n up to cyclic equivalence.
This sequence is the 'PE(n,k)' triangle read by rows.
REFERENCES
John P. McSorley: Counting k-compositions with palindromic and related structures. Preprint, 2010.
LINKS
FORMULA
PE(n, k) = Sum_{d | gcd(n,k)} A179317(n/d, k/d). - Andrew Howroyd, Oct 07 2017
EXAMPLE
The triangle begins
1
1,1
1,0,1
1,1,1,1
1,0,2,0,1
1,1,2,1,1,1
1,0,3,0,3,0,1
1,1,3,2,3,2,1,1
1,0,4,0,6,0,4,0,1
1,1,4,2,6,4,4,2,1,1
For example, row 8 is 1,1,3,2,3,2,1,1.
We have PE(8,3)=3 because there are 3 3-palindromes of 8, namely: 161, 242, and 323, and none are cyclically equivalent to the others.
We have PE(8,4)=2 because there are 3 4-palindromes of 8, namely: 3113, 1331, and 2222, but 3113 and 1331 are cyclically equivalent.
MATHEMATICA
T[n_, k_] := (3 - (-1)^k)/4*Sum[MoebiusMu[d]*QBinomial[n/d - 1, k/d - 1, -1], {d, Divisors@ GCD[n, k]}]; Table[DivisorSum[GCD[n, k], T[n/#, k/#] &], {n, 12}, {k, n}] // Flatten (* Michael De Vlieger, Oct 31 2021, after Jean-François Alcover at A179317 *)
PROG
(PARI)
p(n, k) = if(n%2==1&&k%2==0, 0, binomial((n-1)\2, (k-1)\2));
APE(n, k) = if(k%2, 1, 1/2) * sumdiv(gcd(n, k), d, moebius(d) * p(n/d, k/d));
T(n, k) = sumdiv(gcd(n, k), d, APE(n/d, k/d));
for(n=1, 10, for(k=1, n, print1(T(n, k), ", ")); print) \\ Andrew Howroyd, Oct 07 2017
CROSSREFS
If we ignore cyclic equivalence then we have sequence A051159.
The row sums of the 'PE(n, k)' triangle give sequence A056503.
Sequence in context: A258832 A121444 A118230 * A153246 A358006 A025889
KEYWORD
nonn,tabl
AUTHOR
John P. McSorley, Jun 30 2010
EXTENSIONS
Terms a(56) and beyond from Andrew Howroyd, Oct 07 2017
STATUS
approved