This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A179113 Odd primes which can never divide 2^a+2^b+1. 1
 31, 89, 127, 223, 233, 431, 601, 881, 911, 1103, 1801, 2089, 2351, 3191, 3391, 4513, 5209, 6361, 8191, 9623, 9719, 11447, 11471, 13367, 14951, 15193, 15809, 18041, 18121, 18199, 18287, 20231, 23279, 23671, 39551, 43441, 50023, 53993, 54217, 55441, 55871, 59233 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Contains the Mersenne primes M_p for p>3 as a subsequence, as 2^a+2^b cannot exceed 2^(p-1)+2^(p-2) which is less than 2^p-2 is p>3. LINKS Robert Israel, Table of n, a(n) for n = 1..129 EXAMPLE 31 is on the list as you can't sum any two of {1, 2, 4, 8, 16} to make 30 (mod 31). MAPLE N:= 10000; # to test the first N primes for membership A179113:= proc(p)           local x, R; x:= 1; R:= {}; do   R:= R union {p-1-x};   if member(x, R) then return(false) end if;   x:= 2*x mod p;   if x = 1 then return(true) end if; end do; end proc; select(A179113, [seq(ithprime(i), i=2..N)]); # Robert Israel, May 19 2013 MATHEMATICA n = 10000; (* to test the first n primes for membership *) A179113[p_] := Module[{x = 1, r = {}}, While[True, r = r ~Union~ {p-1-x}; If[MemberQ[r, x], Return[False]]; x = Mod[2*x, p]; If[x == 1, Return[True]]]]; Reap[Do[If[A179113[p], Print[p]; Sow[p]], {p, Prime /@ Range[2, n]}]][[2, 1]] (* Jean-François Alcover, Dec 02 2013, translated from Robert Israel's Maple program *) PROG (PARI) forprime(p=3, 1000, pol=x+O(x^p); t=2; while(t-1, pol+=x^t; t=t*2%p); pol2=pol*pol; if(!polcoeff(pol2, p-1), print1(p", "))) CROSSREFS Sequence in context: A005184 A096731 A039518 * A142715 A093758 A139700 Adjacent sequences:  A179110 A179111 A179112 * A179114 A179115 A179116 KEYWORD nonn AUTHOR Phil Carmody, Jan 04 2011 EXTENSIONS More terms from Robert Israel, May 19 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 24 06:53 EDT 2019. Contains 323529 sequences. (Running on oeis4.)