login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A179033 Emirps with a single 2 as the only prime digit. 2
1021, 1201, 1249, 1429, 9029, 9209, 9241, 9421, 10429, 11621, 12109, 12119, 12149, 12491, 12611, 12619, 12641, 12689, 12809, 12841, 12919, 14029, 14621, 14629, 14821, 14929, 16249, 16829, 18269, 19219, 19249, 19421, 90121, 90821, 91121 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000

EXAMPLE

Note that 2 and 929 are not emirps because they are palindromes.

MAPLE

Dmax:= 6: # to get all terms with up to Dmax digits

Res:= NULL:

npd:= [0, 1, 4, 6, 8, 9]:

for dd from 3 to Dmax do

R:= [seq(seq([seq(npd[j+1], j=convert(6*x+j, base, 6))],

x=[$6^(dd-3) .. 2*6^(dd-3)-1, $5*6^(dd-3)..6^(dd-2)-1]), j=[1, 5])];

for p from 2 to dd-1 do

for r in R do

x:= [op(r[1..p-1]), 2, op(r[p..-1])];

v1:= add(x[i]*10^(i-1), i=1..dd);

v2:= add(x[-i]*10^(i-1), i=1..dd);

if v1 < v2 and isprime(v1) and isprime(v2) then Res:= Res, v1, v2; if min(v1, v2) < 10^3 then print(dd, p, r, x, v1, v2) fi fi

od od od:

sort([Res]); # Robert Israel, Jun 02 2016

MATHEMATICA

emrp[n_]:=Module[{idn=IntegerDigits[n], rev}, rev=Reverse[idn]; PrimeQ[FromDigits[rev]]&&rev!=idn]

only2[n_]:=DigitCount[n, 10, {3, 5, 7}]=={0, 0, 0}&&DigitCount[n, 10, 2]==1

Select[Select[Prime[Range[10000]], emrp], only2] (* Harvey P. Dale, Jan 22 2011 *)

CROSSREFS

Cf. A006567, A179032.

Sequence in context: A088290 A209620 A179032 * A082059 A081633 A020388

Adjacent sequences: A179030 A179031 A179032 * A179034 A179035 A179036

KEYWORD

base,less,nonn

AUTHOR

Lekraj Beedassy, Jun 25 2010

EXTENSIONS

Terms confirmed by Ray Chandler, Jul 13 2010

Definition improved by Harvey P. Dale, Jul 17 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 28 19:04 EST 2023. Contains 359905 sequences. (Running on oeis4.)