This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A178989 a(n) = (k^k + k!) / k(k + 1), where k = prime(n) - 1. 0
 1, 1, 14, 1128, 90942080, 57157560576, 67818988957718528, 115047995548743401472, 674758653138775267142795264, 40819609745761407890621234130376982528 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS According to the two theorems (Fermat and Wilson), k + 1 divides(k^k + k!) because k^k == 1 (mod k + 1) and k! == - 1 (mod k + 1) for any prime k + 1. LINKS EXAMPLE a(3) = 14 because prime(3) = 5 => p = 4 => (4^4 + 4!) / 4(4 + 1) = 280/20 = 14. MAPLE with(numtheory): for n from 1 to 20 do: p:=ithprime(n):q:=p-1:x:= (q^q + q!)/(q*p): printf(`%d, `, x): od: MATHEMATICA f[n_] := Block[{k = Prime@ n - 1}, (k^k + k!)/(k (k + 1))]; Array[f, 10] (* Robert G. Wilson v, Jan 05 2011 *) CROSSREFS Sequence in context: A282272 A208395 A132504 * A232373 A206613 A198712 Adjacent sequences:  A178986 A178987 A178988 * A178990 A178991 A178992 KEYWORD nonn AUTHOR Michel Lagneau, Jan 03 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.