login
This site is supported by donations to The OEIS Foundation.

 

Logo

110 people attended OEIS-50 (videos, suggestions); annual fundraising drive to start soon (donate); editors, please edit! (stack is over 300), your editing is more valuable than any donation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A178989 a(n) = (k^k + k!) / k(k + 1), where k = prime(n) - 1. 0
1, 1, 14, 1128, 90942080, 57157560576, 67818988957718528, 115047995548743401472, 674758653138775267142795264, 40819609745761407890621234130376982528 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

According to the two theorems (Fermat and Wilson), k + 1 divides(k^k + k!) because k^k == 1 (mod k + 1) and k! == - 1 (mod k + 1) for any prime k + 1.

LINKS

Table of n, a(n) for n=1..10.

EXAMPLE

a(3) = 14 because prime(3) = 5 => p = 4 => (4^4 + 4!) / 4(4 + 1) = 280/20 = 14.

MAPLE

with(numtheory): for n from 1 to 20 do: p:=ithprime(n):q:=p-1:x:= (q^q + q!)/(q*p):

printf(`%d, `, x): od:

MATHEMATICA

f[n_] := Block[{k = Prime@ n - 1}, (k^k + k!)/(k (k + 1))]; Array[f, 10] (* Robert G. Wilson, Jan 05 2011 *)

CROSSREFS

Sequence in context: A104226 A208395 A132504 * A232373 A206613 A198712

Adjacent sequences:  A178986 A178987 A178988 * A178990 A178991 A178992

KEYWORD

nonn

AUTHOR

Michel Lagneau, Jan 03 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified October 30 19:38 EDT 2014. Contains 248837 sequences.