The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A178814 (n^(p-1) - 1)/p^2 mod p, where p is the first prime that divides (n^(p-1) - 1)/p. 1

%I

%S 0,487,4,974,1,30384,1,1,0,2,46,1571,1,17,24160,855,0,4,1,189,1,5,11,

%T 1,0,0,1,0,1,3,2,3,0,19632919407,1,60768,1,11,1435,8,0,0,2,2,1,1

%N (n^(p-1) - 1)/p^2 mod p, where p is the first prime that divides (n^(p-1) - 1)/p.

%C (n^(p-1) - 1)/p^2 mod p, where p is the first prime such that p^2 divides n^(p-1) - 1.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Fermat_quotient#Generalized_Wieferich_primes">Generalized Wieferich primes</a>

%F a(n) = (n^(p-1) - 1)/p^2 mod p, where p = A039951(n).

%F a(n) = k mod 2, if n = 4k+1.

%F a(prime(n)) = A178813(n).

%e The first prime p that divides (3^(p-1) - 1)/p is 11, so a(3) = (3^10 - 1)/11^2 mod 11 = 488 mod 11 = 4.

%Y a(2) = A178812(1) = A178813(1). Cf. A001220, A039951, A174422.

%K hard,more,nonn

%O 1,2

%A _Jonathan Sondow_, Jun 17 2010

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 26 18:29 EST 2020. Contains 332293 sequences. (Running on oeis4.)