

A178814


(n^(p1)  1)/p^2 mod p, where p is the first prime that divides (n^(p1)  1)/p.


1



0, 487, 4, 974, 1, 30384, 1, 1, 0, 2, 46, 1571, 1, 17, 24160, 855, 0, 4, 1, 189, 1, 5, 11, 1, 0, 0, 1, 0, 1, 3, 2, 3, 0, 19632919407, 1, 60768, 1, 11, 1435, 8, 0, 0, 2, 2, 1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

(n^(p1)  1)/p^2 mod p, where p is the first prime such that p^2 divides n^(p1)  1.
See references and additional comments, links, and crossrefs in A001220 and A039951.


LINKS

Table of n, a(n) for n=1..46.
Wikipedia, Generalized Wieferich primes


FORMULA

a(n) = (n^(p1)  1)/p^2 mod p, where p = A039951(n).
a(n) = k mod 2, if n = 4k+1.
a(prime(n)) = A178813(n).


EXAMPLE

The first prime p that divides (3^(p1)  1)/p is 11, so a(3) = (3^10  1)/11^2 mod 11 = 488 mod 11 = 4.


CROSSREFS

a(2) = A178812(1) = A178813(1). Cf. A001220, A039951, A174422.
Sequence in context: A179428 A252076 A178813 * A178812 A124667 A142540
Adjacent sequences: A178811 A178812 A178813 * A178815 A178816 A178817


KEYWORD

hard,more,nonn


AUTHOR

Jonathan Sondow, Jun 17 2010


STATUS

approved



