login
A178803
Write the factorial of each term in A036043(n).
5
1, 1, 2, 1, 2, 6, 1, 2, 2, 6, 24, 1, 2, 2, 6, 6, 24, 120, 1, 2, 2, 2, 6, 6, 6, 24, 24, 120, 720, 1, 2, 2, 2, 6, 6, 6, 6, 24, 24, 24, 120, 120, 720, 5040, 1, 2, 2, 2, 2, 6, 6, 6, 6, 6, 24, 24, 24, 24, 24, 120, 120, 120, 720, 720, 5040, 40320, 1, 2, 2, 2, 2, 6, 6, 6, 6, 6, 6, 6, 24, 24, 24, 24, 24
OFFSET
1,3
COMMENTS
Sequence A036043 measures the length of numeric partitions.
EXAMPLE
A036043 begins 1 1 2 1 2 3 1 2 2 3 4 1 2 2 3 3 4 5 ...
so this table begins 1 1 2 1 2 6 1 2 2 6 24 ...
1;
1, 2;
1, 2, 6;
1, 2, 2, 6, 24;
1, 2, 2, 6, 6, 24, 120;
1, 2, 2, 2, 6, 6, 6, 24, 24, 120, 720;
1, 2, 2, 2, 6, 6, 6, 6, 24, 24, 24, 120, 120, 720, 5040;
1, 2, 2, 2, 2, 6, 6, 6, 6, 6, 24, 24, 24, 24, 24, 120, 120, 120, 720, 720, 5040, 40320;
PROG
(SageMath)
def A178803_row(n):
return [factorial(len(p)) for k in (0..n) for p in Partitions(n, length=k)]
for n in (0..10): print(A178803_row(n)) # Peter Luschny, Nov 02 2019
CROSSREFS
Cf. A000041 (shape sequence), A000142 (factorials), A036043, A101880 (row sums).
Sequence in context: A144358 A049404 A159885 * A292901 A083773 A129116
KEYWORD
easy,nonn,tabf
AUTHOR
Alford Arnold, Jun 17 2010
STATUS
approved