The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A178765 a(n) = 17*a(n-1) + a(n-2), with a(-1) = 0 and a(0) = 1. 13
 0, 1, 17, 290, 4947, 84389, 1439560, 24556909, 418907013, 7145976130, 121900501223, 2079454496921, 35472626948880, 605114112627881, 10322412541622857, 176086127320216450, 3003786576985302507, 51240457936070359069, 874091571490181406680, 14910797173269154272629 (list; graph; refs; listen; history; text; internal format)
 OFFSET -1,3 COMMENTS The numerators and the denominators of continued fraction convergents to (17+sqrt(293))/2 lead to the sequence given above. For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 17's along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011 For n>=0, a(n) equals the number of words of length n on alphabet {0,1,...,17} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015 LINKS G. C. Greubel, Table of n, a(n) for n = -1..800 Dale Gerdemann, Fractal images from (17,1) recursion, YouTube Video, Nov 08 2014 Dale Gerdemann, Fractal images from (17,1) recursion: Selected image in detail, YouTube Video, Nov 08 2014 Tanya Khovanova, Recursive sequences Index entries for linear recurrences with constant coefficients, signature (17,1). FORMULA a(n) = 17*a(n-1) + a(n-2) with a(-1) = 0, a(0) = 1. G.f.: 1/(1 - 17*x - x^2). E.g.f.: exp(17*x/2)*sinh(sqrt(293)*x/2)/(sqrt(293)/2). a(n) = ( (17+sqrt(17^2+4))^(n+1) - (17-sqrt(17^2+4))^(n+1) )/(2^(n+1)*sqrt(17^2+4)). a(n) = Sum_{i=0..floor(n/2)}(binomial(n+1,2*i+1)*17^(n-2*i)*(293)^i/2^n) a(n) = Fibonacci(n+1,17), the (n+1)-th Fibonacci polynomial evaluated at x=17. a(n) = U(n, 17*I/2)*(-I)^n with I^2=(-1) and U(n, x/2)=S(n, x), see A049310. a(n-r-1)*a(n+r-1) - a(n-1)^2 + (-1)^(n-r)*a(r-1)^2 = 0; a(-1) = 0 and n >= r+1. a(n-1) + a(n+1) = A090306(n+1); A090306(n)^2 - 293*a(n-1)^2 - 4*(-1)^n = 0. a(p-1) == 293^((p-1)/2)) (mod p) for odd primes p. a(2n+1) = 17*A098248(n) (S(n,291)), a(2n) = A098250(n) (First differences of S(n,291)). a(3n) = A041551(5n), a(3n+1) = A041551(5n+3), a(3n+2) = 2*A041551(5n+4). Lim_{k -> infinity}(a(n+k)/a(k)) = (A090306(n) + a(n)*sqrt(293))/2. Lim_{n -> infinity)(A090306(n)/a(n)) = sqrt(293). EXAMPLE a(2) = 17*a(1) + a(0) = 289 + 1 = 290. MAPLE A178765:=proc(n): if n=0 then 1 elif n=1 then 17 elif n>=2 then 17*procname(n-1)+procname(n-2) fi: end: seq(A178765(n), n=0..15); MATHEMATICA Join[{a=0, b=1}, Table[c=17*b+1*a; a=b; b=c, {n, 100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *) Join[{0}, LinearRecurrence[{17, 1}, {1, 17}, 30]] (* Harvey P. Dale, Jan 29 2014 *) CoefficientList[Series[x/(1-17x-x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 08 2014 *) PROG (Magma) [n le 2 select (n-1) else 17*Self(n-1)+Self(n-2): n in [1..25]]; // Vincenzo Librandi, Nov 08 2014 (PARI) my(x='x+O('x^30)); concat([0], Vec(1/(1-17*x-x^2))) \\ G. C. Greubel, Jan 24 2019 (Sage) (x/(1-17*x-x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 24 2019 (GAP) a:=[1, 17];; for n in [3..30] do a[n]:=17*a[n-1]+a[n-2]; od; Concatenation([0], a); # G. C. Greubel, Jan 24 2019 CROSSREFS Cf. A000045 (k=1), A006190 (k=3), A052918 (k=5), A054413 (k=7), A099371 (k=9), A049666 (k=11), A140455 (k=13), A154597 (k=15), this sequence (k=17). Cf. A086902, A087130. Cf. A243399. Sequence in context: A128358 A015969 A001026 * A041546 A186000 A222572 Adjacent sequences: A178762 A178763 A178764 * A178766 A178767 A178768 KEYWORD nonn,easy AUTHOR Johannes W. Meijer, Jun 12 2010, Jul 09 2011 EXTENSIONS Changed name from defining a(1)=17. - Jon Perry, Nov 08 2014 More terms from Vincenzo Librandi, Nov 08 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 15:46 EST 2022. Contains 358644 sequences. (Running on oeis4.)