

A178748


Total number of '1' bits in the terms of 'rows' of A178746


2



1, 2, 7, 14, 37, 80, 187, 410, 913, 1988, 4327, 9326, 20029, 42776, 91027, 192962
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS

Table of n, a(n) for n=0..15.


FORMULA

G.f: 1/2*x^31/4+(x^4+x^33/4*x^21/2*x+1/4)*F(x) = 0 (from GUESSS)
a(n) = (2^n *(3n+8)+(3n+1)*(1)^n)/9 [From David Scambler, Jun 10 2010]


EXAMPLE

bitcount(1) = 1, bitcount(3) = 2, bitcount(6,6,7) = 7,


CROSSREFS

See also A178747  sum of terms in rows of A178746
Contribution from David Scambler, Jun 10 2010: (Start)
Sum of adjacent terms equals the difference of adjacent terms in A127981.
a(n) + a(n1) = A127981(n+1)  A127981(n) (End)
Sequence in context: A191389 A191319 A018497 * A194590 A107373 A176662
Adjacent sequences: A178745 A178746 A178747 * A178749 A178750 A178751


KEYWORD

nonn


AUTHOR

David Scambler, Jun 09 2010


STATUS

approved



