login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A178716 a(n) = smallest prime whose sum of digits is A001651(n). 0
17, 19999999, 99899999999999, 299989999999999999999999999999999999999, 999999999998999999999999999999999999999999999999999999999, 9999999999999999999999999999999999999999999999999999999999999991999999999999999999999999999999999999999999999999 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

As k runs through the numbers that are not multiples of 3, sequence gives smallest prime p whose sum of digits is k^3.

No primes exist whose sum of digits is a multiple of 3

k=4: 4^3 = 64 = 7 * 9 + 1, 8-digit prime:10^7+(10^7-1) = 2*10^7 - 1

k=5: 5^3 = 125 = 13 * 9 + 8, 14-digit prime: (10^2-1)*10^12+8*10^11+(10^11-1) = 10^14 - 10^11 - 1

k=7: 7^3 = 343 = 38 * 9 + 1: no such prime formed with 38 digits "9" and one digit "1" 343 = 37 * 9 + 2 + 8, gives as 4th term a 39-digit prime: 2*10^38+(10^3-1)*10^35+8*10^34+(10^34-1) = 3*10^38 - 10^34 - 1

k=8: 8^3 = 512 = 56 * 9 + 8, 57-digit prime: (10^11-1)*10^46+8*10^45+(10^45-1) = 10^57 - 10^45 - 1

k=10: 10^3 = 1000 = 111 * 9 + 1, 112-digit prime, 63 "leading" "9's", "1", 48 "ending" "9's": (10^63-1)*10^49+10^48+(10^48-1) = 10^112 - 8 * 10^48 - 1 = ((2*5)^(2^2^2))^7 - (2*((2*5)^(2^2^2)))^3 - 1

k=11: 11^3 = 1331 = 147 * 9 + 8: no such prime formed with 147 digits "9" and one digit "8" 1331 = 147 * 9 + 1 + 7, 149-digit prime: 10^148+(10^143-1)*10^5+7*10^4+(10^4-1) = 2*10^148 - 2*10^4 - 1

LINKS

Table of n, a(n) for n=1..6.

CROSSREFS

Cf. A061105

Sequence in context: A147671 A104536 * A013882 A271562 A157255 A114432

Adjacent sequences:  A178713 A178714 A178715 * A178717 A178718 A178719

KEYWORD

base,nonn

AUTHOR

Ulrich Krug (leuchtfeuer37(AT)gmx.de), Jun 07 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 13 16:10 EDT 2019. Contains 327966 sequences. (Running on oeis4.)