This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A178706 Partial sums of floor(3^n/5). 1
 0, 1, 6, 22, 70, 215, 652, 1964, 5900, 17709, 53138, 159426, 478290, 1434883, 4304664, 12914008, 38742040, 116226137, 348678430, 1046035310, 3138105950, 9414317871, 28242953636, 84728860932, 254186582820 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..700 Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1. Index entries for linear recurrences with constant coefficients, signature (5,-8,8,-7,3). FORMULA a(n) = round((3*3^n - 5*n - 5)/10). a(n) = floor((3*3^n - 5*n - 3)/10). a(n) = ceiling((3*3^n - 5*n - 7)/10). a(n) = round((3*3^n - 5*n - 3)/10). a(n) = a(n-4) + 8*3^(n-3) - 2, n > 4. a(n) = 5*a(n-1) - 8*a(n-2) + 8*a(n-3) - 7*a(n-4) + 3*a(n-5), n > 5. G.f.: x^2*(1+x) / ( (1-3*x)*(1+x^2)*(1-x)^2 ). EXAMPLE a(5) = 0 + 1 + 5 + 16 + 48 = 70. MAPLE A178706 := proc(n) add( floor(3^i/5), i=0..n) ; end proc: MATHEMATICA Table[Floor[(3^(n+1)-5*n-3)/10], {n, 1, 30}] (* G. C. Greubel, Jan 25 2019 *) PROG (MAGMA) [Round((3*3^n-5*n-5)/10): n in [1..30]]; // Vincenzo Librandi, Jun 21 2011 (PARI) vector(30, n, ((3^(n+1)-5*n-3)/10)\1) \\ G. C. Greubel, Jan 25 2019 (Sage) [floor((3^(n+1)-5*n-3)/10) for n in (1..30)] # G. C. Greubel, Jan 25 2019 CROSSREFS Sequence in context: A247168 A305032 A171495 * A276779 A159555 A032195 Adjacent sequences:  A178703 A178704 A178705 * A178707 A178708 A178709 KEYWORD nonn,less AUTHOR Mircea Merca, Dec 26 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 25 12:55 EDT 2019. Contains 324352 sequences. (Running on oeis4.)