login
A178705
Odd composite numbers q such that there exists a, 2<=a<=q-2, such that a^d == 1 mod q where d = A000265(q-1). Thus q is a strong pseudoprime in base a.
1
49, 91, 121, 133, 169, 175, 217, 231, 247, 259, 301, 325, 341, 343, 361, 385, 403, 427, 435, 451, 469, 475, 481, 511, 529, 553, 559, 561, 589, 595, 637, 645, 651, 671, 679, 703, 715, 721, 763, 775, 781, 793, 805, 817, 841, 847, 861, 871, 889, 891, 925, 931, 949, 961, 973, 1001, 1015, 1027, 1035, 1045
OFFSET
1,1
COMMENTS
Odd composite numbers q such that gcd(A000010(q), A000265(q-1)) > 1. - Robert Israel, Dec 20 2017
LINKS
FORMULA
a^d == 1 mod q
EXAMPLE
18^3 == 1 mod 49
MAPLE
filter:= proc(n)
if isprime(n) then return false fi;
igcd((n-1)/2^padic:-ordp(n-1, 2), numtheory:-phi(n)) > 1
end proc:
select(filter, [seq(i, i=9..2000, 2)]); # Robert Israel, Dec 20 2017
MATHEMATICA
filterQ[n_] := If[PrimeQ[n], False, GCD[(n-1)/2^IntegerExponent[n-1, 2], EulerPhi[n]] > 1];
Select[Range[9, 2000, 2], filterQ] (* Jean-François Alcover, Sep 25 2020, after Robert Israel *)
CROSSREFS
Sequence in context: A350704 A157342 A230226 * A118886 A198773 A320633
KEYWORD
nonn
AUTHOR
Karsten Meyer, Dec 26 2010
EXTENSIONS
Corrected by Robert Israel, Dec 20 2017
STATUS
approved