OFFSET
0,2
COMMENTS
Provides a closed form for the Riemann zeta function of one half: Zeta(1/2) = (1 + sqrt(2))(R - log(2)).
The omitted sum of perfect squares equates to the natural logarithm of 2. Giving the alternating sum of all reciprocal square roots as log(2) - R.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..10000
FORMULA
R = Sum_{n>=2} (-1)^n/sqrt(n) for n that are not a perfect square.
R = 1/sqrt(2) - 1/sqrt(3) - 1/sqrt(5) + 1/sqrt(6) - 1/sqrt(7) + 1/sqrt(8) + ...
R = Sum_{n>=2} (-1)^(n+1)*(1-sqrt(n))/n.
EXAMPLE
R=0.0882485371383149391699662072222210683157375892300078737421333614112...
MATHEMATICA
RealDigits[(Sqrt[2] -1)*Zeta[1/2] +Log[2], 10, 100][[1]]
PROG
(PARI) default(realprecision, 100); (sqrt(2)-1)*zeta(1/2)+log(2) \\ G. C. Greubel, Jan 27 2019
(Magma) SetDefaultRealField(RealField(100)); L:=RiemannZeta(); (Sqrt(2)-1)*Evaluate(L, 1/2) +Log(2); // G. C. Greubel, Jan 27 2019
(SageMath) numerical_approx((sqrt(2)-1)*zeta(1/2)+log(2), digits=100) # G. C. Greubel, Jan 27 2019
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Matt Rieckman (mjr162006(AT)yahoo.com), Jun 03 2010
EXTENSIONS
Minor correction, simplified description, and additional comments Matt Rieckman (mjr162006(AT)yahoo.com), Jun 28 2010
STATUS
approved